
doi: 10.1111/joim.12886

Innate immunity, inflammation and tumour progression:
double-edged swords
A. Mantovani1,2,3 , A. Ponzetta1 , A. Inforzato1,2 & S. Jaillon1,2

From the 1Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089, Rozzano, (Mi), ; 2Department of Biomedical Sciences,
Humanitas University, Pieve Emanuele Milan, Italy; and 3The William Harvey Research Institute, Queen Mary University of London, London,
EC1M 6BQ, UK

Content List – 15th Key symposium - “Innate immunity”.

Abstract. Mantovani A, Ponzetta A, Inforzato A, Jaillon
S (Humanitas Clinical and Research Center -
IRCCS, Rozzano (Mi); Humanitas University; Pieve
Emanuele (Mi), Italy; The William Harvey Research
Institute, Queen Mary University of London,
London, UK). Innate immunity, inflammation and
tumour progression: double-edged swords. J Intern
Med 2019; 285: 524–532.

Components of the cellular and the humoral arm
of the immune system are essential elements of
the tumour microenvironment (TME). The TME
includes tumour-associated macrophages which

have served as a paradigm for the cancer-promoting
inflammation. Cytokines, IL-1 in particular, and
complement have emerged as important players in
tumour promotion. On the other hand, myeloid
cells, innate lymphoid cells and complement have
the potential, if unleashed, to mediate anticancer
resistance. Targeting checkpoints restraining
innate immunity, macrophages and natural killer
(NK) cells in particular holds promise as a thera-
peutic strategy.
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Introduction

The tumour microenvironment (TME) represents
an ecological niche in which carcinogenesis and
cancer progression occur [1–5]. At the turn of the
millennium, a cancer cell-centric view dominated
oncology [6]. The TME is now recognized as an
important component of cancer [1–5, 7].

Immunity-related components of the TME include
tumour-promoting inflammation, reflecting innate
immunity and taming of effective adaptive immu-
nity. In general, inflammatory cells in the TME
contribute to an immunosuppressive microenvi-
ronment.

Components of cancer-related inflammation
include myeloid cells (macrophages and neu-
trophils), basophils and eosinophils [2]. Moreover,
elements of the humoral arm of innate immunity
are also present in situ and play a role in the TME
[8, 9]. These include fluid phase pattern recogni-
tion molecules and regulators of the complement
cascade such as PTX3 [8] and complement com-
ponents [9].

Macrophages have served as a paradigm for the
diversity, complexity and protumour role of inflam-
mation in the TME [4]. Tumour-associated macro-
phages (TAM) are present in all tumours,
contribute to progression and inhibit effective
innate and adaptive responses.

Here, major selected aspects of innate immunity
and inflammation in cancer will be summarized.
Recent results on therapeutic targeting will be
emphasized. Moreover, the emerging relevance of
innate lymphoid cell and myeloid cell checkpoints
will be discussed.

Local and systemic inflammation in tumour promotion

Inflammation and cancer are closely linked. The
identification of this connection was in a way an
intuition that can be traced to Virchow in the
19th century [5]. The links at a tissue level and
at a systemic organism level connecting inflam-
mation and cancer are schematically depicted in
Fig. 1. Selected chronic nonresolving inflamma-
tory conditions are a risk factor for developing
tumours [2]. For instance, inflammatory bowel
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disease predisposes to colorectal carcinoma and
chronic obstructive pulmonary disease to lung
cancer.

In the so-called intrinsic pathway, dominant and
recessive oncogenes orchestrate an inflammatory
microenvironment in cancers with no epidemio-
logical connection to inflammatory conditions (e.g.
gliomas). Indeed, cancer-driving genetic events
determine the build-up of an inflammatory
microenvironment [2]. Tumours unrelated in their
natural history to clinical inflammatory conditions
diseases are characterized by a TME with inflam-
matory cells and mediators. For instance, in the
TME of breast cancer macrophages are present
and enhance growth and metastasis [10]. In
particular, in triple negative breast cancer
tumour-associated macrophages (TAM) are abun-
dant and their levels are associated with poor
prognosis [11]. The tyrosine kinase MER causes
epithelial-to-mesenchymal transition and is also
an important driver of TAM accumulation in
breast cancer [12].

At a systemic level, obesity causes a subclinical
inflammation state and is associated to an
increased risk to develop cancer, in this same
extrinsic pathway perspective (Fig. 1). In addition,
inflammation is a crucial component of senescence
at a cellular and organism (inflammaging) level and
cancer is a disease of ageing [13]. Irrespective of the

pathways involved, smouldering, nonresolving
inflammation acts as a propeller of malignant
progression [14].

Therefore, the TME is now considered an essential
element of cancer and the field moved from a
prevailing cancer cell-centric view of the essence of
cancer [2, 6, 15] to one that encompasses the TME.
The intrinsic and extrinsic pathways intersect at
the level of transcription factors (e.g. NFkB;
STAT3), cytokines (e.g. IL-1; TNF) and chemokines.
Thus, inflammatory cells and mediators are com-
ponents of the TME and are now considered an
essential property of cancer [2, 7].

The TME has specific features in cancers in differ-
ent organs contexts and in tumours of different
types in the same organ or tissue. With the same
gross histologic type, tumours can be distin-
guished based on widely different TME. For
instance, in colorectal cancer four TME phenotypes
have been identified based on profiling [1].

Mononuclear phagocytes have provided a paradigm
of cancer-related inflammation.Other inflammatory
cells in the TME are neutrophils, eosinophils and
basophils [16]. Inflammatory cells, TAM in particu-
lar, promote tissue invasion, intravasation and
metastasis, serving as a component of the niche for
tumour cells disseminating at distant sites [17, 18].
Immunocompetent cells in tumours produce

Fig. 1 Links between inflammation and cancer at tissue and organism level.
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cytokines and chemokines that stimulate epithelial-
to-mesenchymal (EMT) transition, which can be the
first step of tumour invasion. Besides promoting
EMT, TAM secrete mediators which stimulate cell
migration and dissemination, such as proteolytic
enzymes (serine proteases and cathepsins), cytoki-
nes (IL-1) and growth factors (epidermal growth
factor; EGF) [4, 19–22].

Neutrophils also contribute to the metastatic pro-
cess, enhancing extravasation, tissue invasion,
survival and growth of tumour cell at secondary
sites [18, 23]. Other cells in the TME favour
dissemination, including immature myeloid cells
or T regulatory (Treg) cells. These cells are potent
inhibitors of adaptive immune responses to growing
tumours. Cancer-associated fibroblasts serve more
than a scaffold for the tumour tissue because they
regulate immunity and interact with cancer cells.
Finally, platelets affect thrombosis, inflammation
and tumour cell survival [24, 25]. In summary, the
TME contains a variety of immunocompetent cells
which enhance dissemination and metastasis.

Cells of the monocyte–macrophage lineage are a
major driver of immunosuppression in the
microenvironment [4]. Mononuclear phagocytes
are endowed with a complex armamentarium of
immunosuppressive mediators such as cytokines
(IL-10 and TGFb), amino acid metabolites, prosta-
glandins, NO and triggers of checkpoint blockade
such as PD-L1 [4].

Analysis of cellular elements present in the TME can
have prognostic value. T-cell infiltration
(‘Immunoscore’) is an independent positive parame-
ter associated with more favourable prognosis in
colorectal cancer and other tumours [26]. In con-
trast, TAM infiltration usually has bad prognostic
significance [27]. Colorectal cancer is an exception
because evidence suggests that TAM infiltration
predicts response to 5-fluorouracil containing ther-
apeutic regimens [28].

Tumour-associated macrophages are considered
targets for therapy [4]. Targeting TAM plays an
important role in the therapeutic activity of tra-
bectedin, a chemotherapeutic drug approved by
the European Medicines Agency (EMA) and by the
Food and Drug Administration (FDA) [29, 30]. This
finding provided proof of principle for the potential
value of TAM-directed strategies. Following work in
mouse models, antibodies or simple molecules
targeting the colony-stimulating factor-1 (CSF1)

pathway have entered clinical assessment together
with checkpoint blockade inhibitors [31]. Macro-
phages can also mediate antitumour activity, when
‘re-educated’, in the presence of antitumour anti-
bodies, or when checkpoints are removed [4]
(Fig. 2). As true in general for inflammation and
innate immunity, macrophages can act as a dou-
ble-edged sword (Fig. 2). Emerging innate immu-
nity checkpoints will be discussed below in
Section ‘Novel checkpoints in innate immunity’.

Humoral innate immunity, complement, ptx3 and cancer

Molecules belonging to the humoral arm of innate
immunity are components of the TME and have
recently been shown to contribute to tumour pro-
gression [8]. Complement can kill cancer cells. How-
ever, preclinical and clinical results now indicate
that complement can contribute to tumour-promot-
ing inflammation [9]. Consistently with the concept
of complementasanenhancerof tumourpromotion,
the humoral pattern recognitionmolecule PTX3 has
been identified toactasanextrinsic oncosuppressor
gene [8]. In 3-Methylcholanthrene (3-MCA)- and
7,12-dimethylbenz[a]anthracene/terephthalicacid
(DMBA/TPA)-induced skin carcinogenesis, myeloid
cells and endothelial cells produce PTX3. In PTX3-
deficienthosts, tumoursdisplayedincreasedmacro-
phage infiltration, cytokine production, angiogene-
sis, complement C3 deposition and C5a levels. This
picture indicated enhanced cancer-related inflam-
mationandcomplementactivation.C3-genetic inac-
tivationandCCL2-inhibitioninhibitedtheenhanced
susceptibility to 3-MCA carcinogenesis and the M2-
like characteristicsandrecruitmentofTAMinPTX3-
deficient hosts. PTX3 acted as a regulator of C3-
deposition on cancer cells by interacting with the
complement inhibitor factor H [8]. Interestingly,
PTX3 deficiency resulted in increased DNA damage,
as shown by more mutations of Trp53, one of the
genestargetedby3-MCA,oxidativeDNAdamageand
expressionofDNAdamagemarkers [8]. Importantly,
in selected human mesenchymal and epithelial
tumours, the PTX3 promoter and regulatory regions
were highly methylated and this epigenetic modifi-
cation resulted in transcriptional inactivation and
silencing of PTX3 expression. In colorectal cancer,
PTX3genemethylationandsilencingwasdetectedas
an early event, already identified in adenomas and
stage1neoplastic lesions, anobservationconsistent
with an important role in pathogenesis [8].

As a biomarker in the clinic, PTX3 was found to act
as a local or systemic indicator of cancer-related
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inflammation. In particular, PTX3 was present at
high levels in soft tissue sarcomas [32], lung cancer
[33, 34], myeloproliferative neoplasms [35], pan-
creatic carcinoma [36], gliomas [37] and hepato-
cellular carcinoma [38], in some settings
correlating with cancer progression. In the case of
lung cancer, different studies reported increased
systemic and local PTX3 levels and a correlation
with disease aggressiveness and progression [33,
34]. Interestingly, in contrast with other epithelial
cells that are poor producers of PTX3, lung epithe-
lial cells express PTX3 in inflammatory conditions
via JNK [39]. These results indicate that cancer-
related inflammation may impact on PTX3 produc-
tion in lung cancer cells. Along the same line, in
myeloproliferative neoplasms, PTX3 levels corre-
lated with mutant JAK2 (JAK2V617F) allele burden
[35, 40], which is well established to sustain
leucocyte activation.

In conclusion, in preclinical models and in some
human tumours (e.g. colorectal cancer) PTX3
functions as an extrinsic oncosuppressor gene,
taming complement-driven macrophage-mediated
tumour promotion. In other cancers, elevated
PTX3 levels reflect systemic inflammation
or genetic events that drive carcinogenesis as
is the case for JAK2 in myeloproliferative
neoplasms.

Il-1 in tumour promotion and its clinical translation

IL-1 is a major mediator connecting inflammation
and tumour promotion. IL-1a and IL-1b in cancer
are a major mechanism of tumour promotion
although early in carcinogenesis, IL-1a may trigger
an antitumour role as an antitumour response
[41]. It was originally shown that IL-1b increased
metastasis in mouse models [42–45]. IL-1a and IL-
1b were found to be induced by RAS and RET-PTC
oncogenes [46, 47]. IL-1b was also found in the
process of carcinogenesis driven by chronic inflam-
mation in the gastrointestinal tract [48]. In skin
carcinogenesis, IL-1a was downstream of RAS,
affecting transformed cells and the TME [46].

In different murine and human tumour types,
including sarcomas, melanoma, pancreatic carci-
noma [49–52], myelomas [53] and breast carcino-
mas [54], a major mechanism of IL-1-mediated
promotion has been shown to be the expansion and
immunosuppressive function of myeloid cells [55,
56]. In mouse and human melanoma, IL-1 caused
upregulation of TET2 in myeloid cells. TET2 is a
DNA methylcytosine dioxygenase which induced
immunosuppression in M2-like TAM [56].
Endothelial cells are regulated by IL-1 by promot-
ing angiogenesis. IL-1 induced endothelial cell
adhesion molecules E-selectin and vascular cell

Fig. 2 The macrophage balance. Macrophages can exert a dual function in the tumour microenvironment. In established
clinical tumours, the protumour function of TAM prevail. Macrophages serve as a paradigm for tumour-promoting
inflammation
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adhesion molecule-1 (VCAM-1) resulting in aug-
mentation of metastasis.

An IL-1b signature was identified in the peripheral
blood mononuclear cells from 145 patients with
metastatic, hormone-negative breast cancer [54].
When treated with daily IL-1 receptor antagonist
(Il-1Ra, anakinra) for 2 weeks, the IL-1b signature
decreased [54]. Thymic stromal cell lymphopoietin
(TSLP) is associated with poor prognosis not only in
breast cancer but also in other epithelial cancers
[57] and correlated with IL-1b [54, 57]. Human
genetics is consistent with a role of IL-1 and related
molecules in carcinogenesis [58–63]. Therefore,
mouse evidence and human genetics suggest that
IL-1 is a driver of tumour promotion.

These results provided a rational for therapeutic
translationof IL-1blockingstrategiesusinganakinra
or anti-IL-1a or IL-1b mAb. Anakinra with dexam-
ethasone in 47 patients with smouldering myeloma
resulted in significantly increase in survival [53, 64].
Anakinra was also added to the standard of therapy
with fluorouracil in advanced metastatic colorectal
cancer [65], hormone-negative breast cancer [54]
and in advanced pancreatic cancer [66, 67]. IL-1a
had long been known to mediate muscle loss and
cachexia [48]. Three trialshaveadministeredanti-IL-
1a to patients with advanced cancers of various
origins [68, 69] as well as patients with colorectal
cancer [70]. Blocking IL-1 resulted in an increase in
lean body mass, improved parameters of quality of
life, decreased pain and decreased constitutional
symptoms. [71]. Reducing IL-1a may also reduce
inflammation-mediated immunosuppression, both
impacting on increased survival and immune-
mediated tumour regression [2].

Preclinical and clinical data since 1990 provided a
background for assessing the impact of blocking
IL-1b in human cancer development. In the sem-
inal CANTOS study with 10,061 patients with
atherosclerosis and high CRP levels, anti-IL-1b
(Canakinumab) resulted in a major (>50%) reduc-
tion in the incidence and mortality from lung
cancer [72]. Blocking IL-1-driven recruitment and
immunosuppressive function of macrophages is
likely to play a major role in these impressive
results.

Novel checkpoints in innate immunity

Adaptive T cell-orchestrated immunity and its
subversion are central in the control of

carcinogenesis and progression. Recent results
have shed new light on the long-overlooked role of
innate lymphoid cells (ILC) [73–75]. NK cells are a
population of ILCs which has not been credited to
play a major role in resistance against solid tumour
carcinogenesis. NK cells are a component of resis-
tance against leukaemia and lymphomas and
restrain haematogenous metastasis. The differen-
tiation and activity of NK cells is also controlled by
negative regulators. The member of the IL-1 recep-
tor family IL-1R8 has recently been shown to serve
as a checkpoint for IL-18-induced differentiation
and activation of NK cells and ILC1 cells [76]. In an
independent study, it was found that IL-37, pro-
duced by Treg cells, suppressed NK function via IL-
1R8 [77]. Inhibition of IL-1R8 unleashed NK cell-
mediated resistance against liver and lung car-
cinogenesis and metastasis, two NK cell-rich
anatomical sites [76]. The checkpoint activity of
IL-1R8 was also detected in human NK cells. These
results suggest that IL-1R8 can serve as a double-
edged sword in carcinogenesis. On the one hand, it
inhibits tumour-promoting inflammation; on the
other hand, it acts as a checkpoint for NK cells
which, if unleashed, can mediate anticancer
immunity at distant organs rich in NK cells. In
agreement with these results, in breast cancer IL-
1R8 expression was found to be associated with an
NK cell-inflamed molecular signature [78]. These
results suggest that targeting the IL-1R8 check-
point may of value in particular in the context of
liver metastasis. IL-1R8 adds to the diverse num-
ber of negative regulators which keep NK cells
under control [74, 79].

As discussed for NK cells and generally true for
immunocompetent cells, the function of
myelomonocytic cells is held in check by molecular
brakes (checkpoints). CD47 is a ‘don’t eat me’
signal recognized by SIRPa on macrophages. It
regulates the phagocytosis of effete normal cells,
erytrocytes in particular [80]. Interestingly, the
c-myc oncogene induces expression of CD47 and
PD-L1 [81]. Preclinical evidence showed that block-
ing the CD47-SIRPa checkpoint unleashed anti-
body-dependent cellular phagocytosis (ADCP). The
antitumour activity of ADCP can synergize with
anti-CD20 in lymphoma killing [82]. Indeed, it has
been known since the late 1970’s that macro-
phages are potent effectors of antibody-dependent
tumour cell killing [4] and preclinical and clinical
evidence is consistent with the in vivo relevance of
this function [4, 83]. Interestingly, signals which
orient TAM in a protumour direction (M2-like) do
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not inhibit their ADCC and ADCP effector function,
or actually increase it [83]. Thus, seemingly para-
doxically, in the presence of antitumour mAb TAM
may well be suited to mediate ADCC-ADCP after
checkpoint blockade.

In a Phase 1b [84], a monoclonal antibody (mAb,
5F9) blocking the CD47 checkpoint of macrophage
function in concert with anti-CD20 (rituximab) had
significant antitumour activity in refractory diffuse
large B-cell lymphoma and follicular lymphoma.
These results [84] are noteworthy not only because
of their own clinical merit (mild side effects;
frequency, rapidity and durability of responses)
but also because they have more in general impli-
cations for cancer immunotherapy [85].

Concluding remarks

Immunity and inflammation are essential elements
of the tumour TME which provides a nurturing
niche for cancer [1, 5, 7]. Inflammatory cells, TAM
in particular, promote invasion dissemination and
metastasis. Progression of cancer to invasion and
metastasis and evasion from immunity are associ-
ated with immunosuppressive pathways on innate
and adaptive antitumour immune responses.
Immunosuppression is mediated by suppressive
cells of the myeloid lineage, triggering of check-
point blockade, induction and recruitment of Treg
cells.

Quantitative analysis of the immune and inflam-
matory components of the TME has resulted in the
identification of novel prognostic factors associated
with clinical cancer progression as illustrated by
the immunoscore for T cells and by TAM analysis.
Genomic approaches have added vistas to the
analysis of the TME and to candidate new classi-
fications of cancers. Finally, better understanding
of the mechanism of action of conventional
chemotherapeutic strategies, the therapeutic out-
come of checkpoint blockade inhibitors, the intro-
duction of therapeutic antibodies and, very
recently, therapies based on adoptive transfer of
immunocompetent cells for leukaemias and lym-
phomas [86–88] have unequivocally shown that the
immune responses can be manipulated to cure
metastatic tumours.

The emergence of novel checkpoints acting on
myeloid and innate lymphoid cells [76, 84, 85]
may provide tools for innovative approaches. In
the same vein, the impressive results discussed

above blocking IL-1 in patients [89] offer promise
for new approaches blocking tumour-promoting
inflammation.
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