
C
o

0945-053X/© 2023 The Au
under the CC BY-NC-ND lic
ontrolled extracellular proteolysis
f thrombospondins
Laura Carminati, Elena Carlessi, Elisa Longhi, and Giulia Taraboletti

Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via
Stezzano 87, Bergamo 24126, Italy

Corresponding author. giulia.taraboletti@marionegri.it.
https://doi.org/10.1016/j.matbio.2023.03.011
Abstract

Limited proteolysis of thrombospondins is a powerful mechanism to ensure dynamic tuning of their activities
in the extracellular space. Thrombospondins are multifunctional matricellular proteins composed of multiple
domains, each with a specific pattern of interactions with cell receptors, matrix components and soluble fac-
tors (growth factors, cytokines and proteases), thus with different effects on cell behavior and responses to
changes in the microenvironment. Therefore, the proteolytic degradation of thrombospondins has multiple
functional consequences, reflecting the local release of active fragments and isolated domains, exposure or
disruption of active sequences, altered protein location, and changes in the composition and function of TSP-
based pericellular interaction networks. In this review current data from the literature and databases is
employed to provide an overview of cleavage of mammalian thrombospondins by different proteases. The
roles of the fragments generated in specific pathological settings, with particular focus on cancer and the
tumor microenvironment, are discussed.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Introduction

Limited processing by proteases is an important
post-translational mechanism modulating the func-
tion of extracellular molecules, particularly proteins
containing multiple domains and active sites, such
as matrix components and the matricellular proteins
thrombospondins, ensuring a rapid and effective
response to changes in the microenvironment [1,2].
Proteolytic processing can induce the disruption or
de-novo exposure of active sites, the release of
active fragments, and changes in protein conforma-
tion and localization, resulting in loss, gain or
change of function of substrata. An example is the
release of bioactive fragments, referred to as matri-
kines and matricryptins, whose biological properties
differ from those of the whole molecule [3].
The matricellular proteins thrombospondins

(TSPs) are major mediators of cell interactions with
the environment in several processes during devel-
opment and in pathological events such as cancer.
Mammalian TSPs are a family of five multimeric,
thors. Published by Elsevier B.V. This is a
ense (http://creativecommons.org/licenses
modular, calcium-binding glycoproteins, structurally
divided into two subgroups [4]. TSP-1 and TSP-2
form homotrimers (subgroup A), and TSP-3, TSP-4
and TSP-5/COMP form homopentamers (subgroup
B, Fig. 1).

A common feature of all the TSPs is a conserved
C-terminal cassette � considered the signature
domain of TSPs � containing variable numbers of
EGF-like type 2 repeats (E), the calcium-binding
TSP type 3 repeats (Ca) and a globular C-terminal
region (G) structurally homologous to the L-type lec-
tin domain. The entire C-terminal region functions as
a single folded unit, stabilized by multiple interac-
tions between the involved domains [4,5].

The amino-terminal region (N) of TSPs is more
variable, with the laminin-G like domain being the
most conserved feature. TSP5/COMP lacks a dis-
tinct N-terminal domain. In TSP-1 and TSP-2 the N-
terminal domain is followed by an oligomerization
domain, a von Willebrand Factor type C/ procollagen
domain (VWFC), and three type 1 repeats (P, also
called properdin or thrombospondin repeats, TSRs).
n open access article
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Fig. 1. Structure of TSPs. (A) Modular structure of the subgroup A (TSP-1 and TSP-2) and subgroup B (TSP-3, TSP-4
and TSP-5/COMP) monomers. TSPs in each subgroup share similar domain organization, except for a smaller N-terminal
domain (N) in COMP. (B, C) Three-dimensional structures of monomeric TSP-1 (AF-P07996-F1, B) and COMP (AF-
P49747-F1, C) based on AlphaFold predictions [165,166]. Colors were assigned to each domain as in (A) using PyMOL
Molecular Graphics System (Version 2.5.4 Schr€odinger, LLC). The structure is affected by oligomerization, and binding to
ligands and calcium.
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Pentameric thrombospondins lack VWFC and
TSRs.
Oligomerization of TSP subunits, mediated by

coiled-coil regions, provides TSPs with multivalency
properties playing a pivotal role in their activity, as
supported by the relative transience of monomeric
isoforms in TSPs’ evolution [6]. Oligomerization is
crucial for ECM incorporation of TSPs [7,8], for TSP-
1 and TSP-2 induction of cell spreading and fascin
spike organization [9], and for TSP-4 activity in
matrix assembly [10].
The multiplicity and complexity of activities derive

from the modular nature of these matricellular mole-
cules, composed of multiple domains, each with a
different pattern of interacting ligands and activities
[11]. The cellular and molecular composition of
defined biological settings dictates the bioavailability
of the active sites, hence modulating the activity of
TSPs.
Proteases are potent controllers of TSPs, particu-

larly those acting in the extracellular space, as they
cleave TSPs at specific sites releasing fragments
which, by interacting with selective ligands, exert
diverse activities in a context-dependent manner.
Intracellular proteolysis of TSPs � upon their endo-
cytic uptake � also occurs, usually as a process of
complete degradation rather than limited proteolysis,
contributing to regulation of their presence in the
ECM [12,13].

Early studies recognized TSPs as targets for pro-
teases. The first evidence of TSP-1 as a major inhib-
itor of angiogenesis [14] was the identification of a
tumor suppressor antiangiogenic molecule as a frag-
ment of TSP-1, already pointing to limited proteolytic
processing of TSP-1 as an important mechanism of
functional regulation. Initial studies exploited this
sensitivity of TSPs to site-restricted proteolysis to
characterize the domains’ activity. For instance, chy-
motrypsin- and thrombin-generated fragments
served to identify antiangiogenic sites in a large,
140 kDa C-terminal fragment [15�17] and pro-
angiogenic sites in the N-terminal domain [18]. Site-
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restricted proteolysis of TSP-1 was also instrumental
in identification of the TGF-b activating site in the
type 1 repeats [19], and the pro-adhesive site in the
70 kDa-core fragment of the protein [20].
This review aims to provide a broad overview of

the generation of TSP fragments by proteases and
to illustrate how the proteolytic degradation of TSPs
acts as a powerful mechanism to control their activity
through the local selective release of bioactive frag-
ments. Following the description of the major active
sites on TSPs, necessary for the comprehension of
the biological consequences of proteolytic cleavage,
we focus on the formation of proteolytic fragments
and their activity in different settings, with the main
focus on angiogenesis and tumor progression, and
mentioning some other physiological and pathologi-
cal settings.
Major functions of TSPs in cancer

TSPs affect several aspects of tumor progression,
acting directly on tumor cell functions or indirectly by
shaping the tumor microenvironment (TME), where
they control extracellular matrix deposition, angio-
genesis and stroma cell functions, blood vessel for-
mation and perfusion, and immune cell activity. The
expression of TSPs, frequently altered in different
cancer types, and mutations in the THBS genes are
correlated with alterations in the tumor cell cycle and
proliferation, epithelial-mesenchymal transition and
immune cell infiltration [21]. TSPs exert both pro-
and anti-tumor activities, depending on tumor stage
and context. TSP-1 and TSP-2, the most thoroughly
investigated, have tumor-restraining activity in the
early stages but can promote progression at later,
advanced stages [21�23].
The role of pentameric TSPs in biological settings

and other pathologies has been reported [24�26],
but less is known about their involvement in cancer.
TSP-3 expression correlates with tumor progression
and metastasis in osteosarcoma [27]. TSP-4 is upre-
gulated in colorectal cancer [28], promotes hepatocel-
lular carcinoma progression [29,30], and stimulates
cancer cell proliferation by enhancing the cross-talk
between cancer-associated fibroblasts and tumor
cells [31]. COMP promotes thyroid carcinoma cell
invasiveness [21]. TSP-4 and COMP, together with
TSP-2, have been proposed as potential prognostic
and diagnostic markers in gastric cancer [32].

Activity of TSP-1 and TSP-2 in cancer

Activity on the tumor cells
TSPs, particularly TSP-1 and TSP-2, affect tumor

cell adhesion, invasion, differentiation, proliferation,
and apoptosis. Effects on extracellular matrix com-
position, fibrillogenesis, mechanical properties and
architectural organization indirectly control tumor
cell adhesion, morphology, migration, and
responses to chemical and mechanical changes of
the environment [33]. TSPs enhance the migration
of tumor cells, a crucial event in local invasion and
metastasis [34,35].

Moreover, TSPs interact with proteins involved in
the regulation of tumor cell proliferation, DNA repair
and programmed cell death and regulate differentia-
tion of cancer precursor cells, cell metabolism,
responses to ischemic and genotoxic stress, cell
senescence, autophagy and tumor cell responses to
therapy [36,37]. Finally, TSP-1 has been identified
as a mediator of dormancy of disseminated meta-
static cells in the vascular niche [38].
Activity on the tumor microenvironment (TME)
Angiogenesis. TSP-1 was the first member of the

family to be identified as an angiogenesis inhibitor
[14,39]. Among other TSPs, TSP-2 has a similar
domain structure and antiangiogenic function. TSP-
1 and TSP-2 act through diverse domain-specific
mechanisms, which include receptor-mediated
direct effects on endothelial cells (apoptosis, inhibi-
tion of endothelial cell functions, suppression of nitric
oxide signaling) and indirect effects mediated by
TSP interaction with angiogenic factors (FGF2,
VEGF, TGF-b), and proteases [40].

The discovery of pro-angiogenic sequences in the
N-terminal domain of TSP-1 [18,41] indicated that
TSPs can have context-dependent pro- and anti-
angiogenic effects on angiogenesis, depending on
their concentration, association with the ECM, the
spatial and temporal expression of ligands, and the
availability of active domains. Besides affecting
sprouting angiogenesis, a proteolytic fragment of
TSP-1 was also implicated in intussusceptive angio-
genesis [42] and in vascular remodeling [43]. Vascu-
lar remodeling induced by the type 3 repeats
domain promoted the distribution and activity of anti-
neoplastic drugs in preclinical models [44].

Matrix organization. TSPs play pivotal roles in
matrix formation and organization. Incorporation and
retention of TSPs in the ECM are mediated by the
C-terminal region, specifically the L-lectin domain
and RGD site [8]. TSPs bind to diverse ECM pro-
teins, such as fibronectin, collagen, laminin, matri-
lins, glycosaminoglycans, and to matrix-associated
factors [11,45]. Binding to fibronectin controls TSP-1
incorporation into the matrix [46] and protects TSP-1
from degradation. Conversely, retention of TSPs
into the matrix is affected by proteolytic processing
[47]. TSP-1 can also promote the synthesis of ECM
components, either directly, or through the activation
of TGF-b [48]. TSP-1 and TSP-2 modulate collagen
homeostasis and ECM assembly, regulating colla-
gen fibrillogenesis and the levels of matrix-degrad-
ing MMPs [49].
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Immune responses. TSPs are involved in both the
adaptive and the innate immune response [50]. T
cells produce TSP-1 and are induced to express
TSP on the cell surface by T-cell receptor (TCR)
stimulation [51]. In turn, TSP-1 affects T cells activa-
tion and function, mainly through CD47 [50,52,53].
TSP-1 was associated with cytotoxic supramolecu-
lar attack particles (SMAPs) released by cytotoxic T
lymphocytes [54] and NK cells [55], where it contrib-
utes to CTL target killing.
TSP-1 exerts various context-specific activities

also on cells of the innate immune response [50,56],
acting on macrophages [57,58], NK cells [59] and
myeloid-derived precursor cells [60]. TSP-1 affects
also neutrophils, as the type 3 repeat domain limits
neutrophil proteolytic activity [61,62].
Main active sites of TSPs

Many active sites have been identified in each
TSP domain and their ligands and function(s) have
been reported (Fig. 2). In some cases, these active
sequences have been used as templates for drug
design applications. In most cases, activities have
been reconducted to single active sites and their
interaction with specific ligands [11], but there are
also examples of complex functions generated by
coordinated action of several pathways activated
by multiple sites in different TSP domains inter-
acting with their respective cell receptors or
ligands. For each TSP domain we provide a brief
overview of the main active sites, their interac-
tions and functions.
Fig. 2. Schematic representation of TSP-
N-terminal heparin binding domain

This domain contains the main heparin-binding site
of TSPs. It contains both pro-adhesive sequence,
interacting with b1 integrins [63] and de-adhesive
sequences, interacting with calreticulin [64].

The N-terminal domain exerts pro-angiogenic
effects in endothelial cells by interacting with hep-
aran sulfate proteoglycans, integrins, and calreticu-
lin [18,41,65].

Sequences in this domain have been reported to
be active in regulating the functions of T cells and
innate immune cells [51,58,66,67]. An N-term con-
taining fragment produced by monocytes undergo-
ing apoptosis promoted dendritic cell phagocytosis
and clearance of apoptotic cells [68].

VWFC/procollagen homology domain and
properdin type 1 repeats

The VWFC or procollagen homology domain fol-
lows the oligomerization domain. Sequences in the
type 1 repeats domain of TSP-1, but not TSP-2, bind
and activate latent TGF-b [19,69] and induce a num-
ber of TGF-b-dependent activities including regula-
tion of cancer cell proliferation and apoptosis [70],
and promotion of mesenchymal stromal cell prolifer-
ation [71].

The type 1 repeats of TSP-1 and TSP-2 have anti-
angiogenic activity and inhibit endothelial cell func-
tions [15] by interacting with CD36 [72] or b1
integrins [73,74]. Peptides and recombinant frag-
ments inhibited angiogenesis and tumor growth
through different mechanisms in various preclinical
1 ligands and activities for each domain.
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models [70,75,76]. The active sequences in the type
1 repeats have been used as models for the devel-
opment of antineoplastic antiangiogenic com-
pounds, in most cases in the form of modified
synthetic peptides, including cyclic peptides [77], or
D-reverse peptides, [78]. Examples of active com-
pounds are the modified peptides ABT-510, ABT-
526 and ABT-898 [79,80] and the CVX-22 and CVX-
045, peptides linked to IgG1 antibody [81,82].

EGF-like type 2 repeats

The main activity of this domain is promotion of
neural synapse formation. Interaction of this domain
with the gabapentin receptor a2d-1 mediates the
ability of astrocyte-secreted TSP to induce excitatory
synapse formation [83] and is responsible for TSP-4
involvement in chronic pain [84]. Despite its similar-
ity with EGF, this domain does not appear to bind to
EGFR, but can activate EGFR signaling by an indi-
rect mechanism involving MMP-9-mediated release
of EGFR ligands [85].

Calcium-binding type 3 repeats

The distinctive feature of this domain is the pres-
ence of disulfide bonds between consecutive type 3
repeats and cooperative binding of calcium ions.
The interaction with calcium and the status of disul-
fide bonds profoundly affect the structure of the
domain, determining the exposure and availability of
active sites, such as the integrin-recognition
sequence RGD [86] and the binding sites for neutro-
phil elastase and cathepsin G [87,88].
This domain in TSP-1 and TSP-2 also interacts

with FGF2, inhibits its bioavailability and function
[17,89] and promotes tumor vascular remodeling
[44]. The domain also interacts with PDGF, protect-
ing it from degradation by proteases and promoting
its activity on mesenchymal stromal cells [71].

C-terminal globular domain

The L-lectin domain is involved in TSP-1 retention
in the ECM and cell attachment [8], and exerts sev-
eral activities mediated mainly by its interaction with
CD47 [50]. The 4N1K peptide has been identified as
the TSP-1 binding site for CD47, although its role in
CD47 recognition is still unclear since this motif is
not exposed, hidden within a hydrophobic b-strand
arrangement of the C-terminal domain, and either
structural rearrangement or glycosaminoglycans
might be involved [90].
TSP-1 interaction with CD47 affects several cell

types. In endothelial cells it is involved in inhibition of
nitric oxide/cGMP signaling and angiogenesis, and
induction of vasoconstriction [91]. In tumor cells it
mediates apoptosis [92], autophagy [93], and drug
response [94]. In T cells it mediates migration [66],
antigen-dependent activation and clonal expansion
[52], and generation of regulatory T cells [95]. In innate
immune cells it regulates response to inflammatory
stimuli and tumor cell-killing and has both positive and
negative effects on NK cell functions [50].

CD47 is considered a promising target for antineo-
plastic therapies with antibodies or peptides, with the
aim of inducing immunogenic cell death of cancer
cells, promoting tumor cell killing by macrophages,
and overcoming drug resistance [96�98].
Proteolytic degradation of TSPs

Proteolytic enzymes cleave TSPs at distinctive
sites, releasing fragments with diverse properties
and activities. TSP-degrading proteases are pro-
duced by a number of cell types in specific biological
settings and pathological states, associated with
processes of wound healing, inflammation, immune
response, bacterial infection, and angiogenesis-
driven diseases. In cancer, proteases are released
by both the transformed and non-transformed cells,
including inflammatory cells, endothelial cells and
tumor associated fibroblasts. Since these cells also
release TSPs, it derives that in the TME as well as in
non-tumor diseases, TSPs and TSP-degrading pro-
teases are often found co-expressed � released by
the same or different cell types� confirming the
importance and biological relevance of TSP proc-
essing by proteases as a key posttranslational modi-
fication. For example, ADAM12, COMP, CTSK,
FAP, and MMP2 were co-expressed with TSP-2 in
breast cancer, and FAP was co-expressed with TSP-2
in lung and gastric cancer [99]. MMP1 and TSP-2 were
part of a 4-gene expression signature predictive of
local recurrence in patients with oral carcinoma [100],
whereas MMP7, plasminogen, TIMP1 and TSP-2
were part of a panel of prognostic biomarkers in
patients with pancreatic ductal adenocarcinoma [101].
TSP-1 colocalized with HTRA1 in RPE/Bruch’s mem-
brane area � the primary site for age-related macular
degeneration pathogenesis [102].

Proteolysis of TSPs is tightly regulated at different
levels. A main limiting step is the concentration and
activation status of proteases, and the presence of
their physiological inhibitors. Environment-mediated
changes in TSP structure too can affect their sensi-
tivity to protease. Conjugation with ligands (such as
fibronectin or heparin), the concentration of calcium,
pH, and the activity of disulfide isomerases can
affect TSP structure and sensitivity to proteases
[103]. TSP-1 polymorphisms are also involved: the
S700 variant, associated with an increased risk of
myocardial infarction, is more susceptible to trypsin
and cathepsin G digestion than the N700 protein
[104,105].

The data reported here were taken from the litera-
ture and public databases, including MEROPS
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(https://www.ebi.ac.uk/merops/), BRENDA Enzymes
(https://www.brenda-enzymes.org/), and Topfind 4.0
(https://topfind.clip.msl.ubc.ca/).
Details on the cleavage of TSPs by proteases are

provided in Table 1 (a complete version of this table
is presented as Supplementary Table 1). Fig. 3
Table 1. Cleavage of thrombospondins by proteases.

Substrate Enzyme a Cleavage Site b,c

TSP-1

ADAMTS-1 * E311-L312 ** O

ADAMTS-3 N582-G583 E

ADAMTS-7 * � �
BMP-1 * S375-D376 ** C

Cathepsin G

* � �
* � N-

* � �
R255-T256 x N

Chymotrypsin * � N

Elsastase-2
(Neutrophil
elastase)

� �
* � �
* � N

* � �
FAP S18-N19 N

Granzyme B *

D163-R164
D804-G805
D848-S849
D865-G866
D937-S938
D1001-E1002

^ N

HTRA1
* � �
* V215-R216 ** N

Kallikrein-4 (KLK4) * � �
Kallikrein-15 (KLK15) 13 sites �
Kallikrein-7 (KLK7) * Y258-I259

Y665-L666
N

MMP-2 � �

MMP-14

� �
* H441-W442

P467-Q468
^ P

* � �
Plasmin * � �

Thrombin
* � �
* � N

Unknown R47-L48 N

Unknown
T18-N19
R216-F217 N
gives a graphical representation of cleavage sites
on TSPs. In many cases, the actual cleavage has
been confirmed by the use of purified/recombinant
TSPs and enzymes, and the cleavage site identified
by sequencing analysis (confirmed cleavages are
indicated by asterisks, in Table 1 and Fig. 3). With
Domain d Fragments Released Reference

lig - PC trimeric-36 kDa N þ 110 kDa C-
term

[123]

� [125]

140 kDa fragment [126]

- P 50 kDa trimeric N þ 120 kDa C-
term

[130]

25 KDa N þ 155 KDa [134]

Olig N þ trimeric C-term fragment [88]

None (complete degradation) [22]

N þ trimeric 160 kDa [105]

- Olig 25 kDa N þ trimeric 70kDa [150]

N þ trimeric 140�160 kDa [105]

25 KDa N þ 100�155 KDa [134]

- Olig N þ trimeric C-term [87]

None (complete degradation) [22]

� [138]

, Ca, G Multiple fragments

[141]

� [144]

N-term [143]

15�30 kDa N-term [147]

� [149]

E N, C-E2 [148]

� [112]

� [116]

50 kDa N-term [42]

� [113]

25 KDa N þ 155 KDa [134]

25 KDa N þ 155 KDa [134]

- Olig 25 kDa N þ trimeric 85�130 kDa [150]

� [153]

� [157]

(continued)

https://www.ebi.ac.uk/merops/
https://www.brenda-enzymes.org/
https://topfind.clip.msl.ubc.ca/


Table 1 (Continued)

Substrate Enzyme a Cleavage Site b,c Domain d Fragments Released Reference

TSP-2

ADAMTS-1 * E306-L307 ** Olig 30 and 42 kDa [123]

FAP G19-D20
E306-L307

N
Olig

� [138]

Granzyme B *

D176-E177
D300-N301
D791-N792
D852-L853
D867-G868
D1003-E1004

^ N, Ca, G Multiple fragments

[141]

MMP-2

� � � [115]

E288-L289 Olig � [114]

* G258-V259
Q541-M542

** Olig
P

Multiple fragments

MMP-9 * � � Multiple fragments [114]

MMP-14 � � � [116]

TSP-4

Unknown R158-A159
R827-A828

N
G � [153]

Unknown R827-A828 G � [157]

COMP

ADAMTS-4

D530 - F531
V552 - V553 Ca- G � [119]

* � � 110 kDa C-term fragment [129]

ADAMTS-7 * � � 51�100 kDa fragments [127]

ADAMTS-12 * � � 100 kDa main fragment [128]

Caspase 6 D273-G274 Ca � [158]

HTRA1

S77-V78
H90-C91
N194-S195
G203-S204
E523-N524
Y574-T575

Olig
E
Ca
G

�

[145]

MMP-9 * � � Multiple fragments [117]

MMP-12 � � � [119]

MMP-13 * � � Multiple fragments [117]

MMP-19 * � � 60 kDa fragment [118]

MMP-20 * � � 60 kDa fragment [118]
a * Evidence of cleavage obtained with purified/recombinant enzyme and substrate.
b Cleavage site: P1-P10 aminoacids are indicated. Residue numbers refer to UniProt sequences. Release of signal peptide is not shown.
c ** Cleavage site confirmed by sequencing fragments generated by purified/recombinant enzyme and substrate. x cleavage site confirmed with synthetic peptides cov-

ering the region of interest. ^ putative cleavage site.
d Cleaved domain: N (N-terminal), Olig (oligomerization site), PC (procollagen, VWFC), P (Properdin-like type I repeats), E (EGF-like type II repeats), Ca (Calcium-bind-

ing type III repeats), G (C-terminal globular domain).
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few exceptions, the identified cleavage sites are
exposed in the native molecule, as they are found
at domain boundaries, disordered regions and
surface loops (Supplementary Table 1). Cleavage
has often been described or validated in cellular
systems or in vivo, confirming the accessibility of
the cleavage site in physiological conditions and
further supporting the biological importance of the
described proteolytic event.
The TSP-cleavage activity of each protease is
summarized in Fig. 4. Proteases are classified
according to MEROPS.

Metallo peptidases - Matrix metalloprotease
family

MMPs. Matrix metalloproteases (MMPs) are a
large family of secreted or membrane-bound zinc-



Fig. 3. Protease cleavage sites on TSPs. Graphic representation of cleavage sites for the proteases indicated on TSP-
1 (A, top) and TSP-2 (A, bottom) and TSP-5/COMP (B). Red arrows in B indicate unknown protease cleavage sites on
TSP-4 (no cleavage reported for TSP-3). Cleavage at sites close to the N-term/signal peptide are not indicated. Asterisks
indicate cleavage sites confirmed by sequencing of fragments generated by purified/recombinant enzyme and substrate.
Dotted line, multiple cleavage sites in the same region. Star, in silico prediction of the MMP-14 cleavage sites. Arrow
heads, in silico prediction of the Granzyme B cleavage site on TSP-1 and TSP-2. u.p., unknown protease.
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dependent endopeptidases [106]. MMPs are
responsible for the proteolytic processing of a wide
range of ECM substrates, but also of growth and
angiogenic factors, cytokines, other proteases,
receptors, and adhesion molecules, with conse-
quent complex biological activities.
Different MMPs are differently expressed (upregu-

lated or downmodulated) in cancer and can exert
pro- and anti-tumor activities [1,107,108]. MMPs can
be produced by both the tumor and the stroma cells.
For instance, MMP9 is produced by neutrophils and
tumor associated macrophages. MMP-14 is
expressed by cancer but also by cancer-associated
fibroblasts, macrophages, endothelial cells, and
bone marrow derived mesenchymal stromal cells
[107,109]. MMPs contribute to focal degradation of
the ECM, promoting invasion of both normal (endo-
thelial cell and immune cells) and cancer cells. They
support tumor cell invasion, metastatic dissemina-
tion, and angiogenesis. In addition, MMPs can also
shape the microenvironment of premetastatic niches
and are implicated in the reawakening of dormant
disseminated tumor cells [110].
Interestingly, several MMPs have been

detected intracellularly, in different compartments,
where they are activated and able to cleave intra-
cellular substrata [111]. In view of the intracellular
presence and activities of TSPs, the possibility
that TSPs may be processed intracellularly war-
rants further investigation.

The group of C.M. Overall made a significant con-
tribution to the identification of substrates and cleav-
age product of MMPs in physiological contexts.
They identified TSP-1 as a substrate of MMP-2 in
fibroblasts [112] and MMP-14 (MT1-MMP) in breast
cancer cells overexpressing these MMPs [113].
Using an iTRAQ-TAILS approach for N-terminomics
analyses, by labeling and blocking primary amines,
these authors also characterized the substrate
degradome of MMP-2 and MMP-9, confirming that
TSP-2 is a substrate of MMP-2 (validated by Edman
sequencing of MMP-2-generated TSP-2 fragments)
and identifying multiple cleavage sites in different
regions of the molecule [114]. Interestingly, this
study found some differences in cleavage sites
when analyzing fragments generated in a cell sys-
tem or obtained by incubating recombinant TSP-2
with MMP-2. This points to a complex critical role of
the microenvironment in controlling the release of
proteolytic TSP fragments. MMP-2 cleavage sites
were also found in the type 2 repeats of murine
TSP-2 [115].

By comparing the proteomic profile of TNFa-acti-
vated endothelial cells from animals expressing or
not MMP-14 (MT1-MMP), the group of A.G. Arroyo
identified TSP-1 and TSP-2 among the substrates



Fig. 4. Cleavage activity of proteases for the TSPs indicated. Proteases are classified according to MEROPS.
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degraded by this protease during inflammation
[116]. They identified positions H441-W442 and
P467-Q468 in TSP-1 as putative sites for MMP14
cleavage. Cleavage of TSP-1 at these sites would
disrupt the CD36-binding sequence and release a
C-terminal fragment containing the CD47 and avb3
integrin binding motifs, which mediate NO produc-
tion in endothelial cells, vessel dilation and intus-
susceptive angiogenesis in a model of inflammatory
bowel disease [42]. The E123CaG-1 recombinant
fragment, containing the TSP-1 region predictably
released after MMP14 processing, retained the
activity. The lack of activity of the whole TSP-1 mole-
cule [42] indicated that in conditions of increased
MT1-MMP and TSP-1 expression (such as during
inflammation, vascular diseases and cancer),
release of the C-terminal TSP-1 fragment would
favor integrin avb3- and CD47-mediated cell func-
tions over functions mediated by CD36 or other
receptors, underlining the importance of MMPs in
TSP-1 activity through the release of fragments
which interact with specific sets of receptors.

In articular cartilage, several MMPs were respon-
sible for the release of COMP fragments similar to
those typically found in synovial fluid from patients
with rheumatoid arthritis and osteoarthritis. COMP is
cleaved by several MMPs, mainly MMP-9, MMP-12,
MMP-13, MMP-19 and MMP-20 [117�119], indicat-
ing a role for these MMPs in rheumatoid arthritis and
osteoarthritis.

Metallo peptidases - astacin/adamalysin family

ADAMTS (a disintegrin and metalloprotease with
thrombospondin motifs) are zinc metalloproteinases.
The severe disorders or birth defects associated
with mutation in ADAMTS genes in mammals dem-
onstrate their important role on embryonic
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development and physiological processes [120]. In
cancer, their expression and activity are often
deregulated. ADAMTS proteins, secreted by both
tumor cells and stromal cells, cleave and regulate
the activity of ECM components, growth factors and
receptors, finally affecting tumor cell behavior, the
tumor vasculature and the immune microenviron-
ment. These proteases exert tumor-suppressive,
pro-tumorigenic and immunosuppressive functions
depending on the nature of available substrates and
interacting factors [121,122].
The proteolytic degradation of TSP-1 and TSP-2

by ADAMTS is important to control their activity.
ADAMTS-1 cleaves both TSPs, releasing different
antiangiogenic fragments identified in vitro and
detected in wound-healing models in vivo [123].
ADAMTS-1 cleaves TSP-1 between the coiled-coil
oligomerization domain and the VWFC domain (resi-
dues E311-L312), releasing a trimeric N-terminal
fragment predicted to be unstable, and monomeric
110 to 125 kDa C-terminal fragments that can
remain in the inflamed tissue or be released in the
circulation. These fragments were important in the
control of angiogenesis in wound healing [123], and
in the formation of colon and renal cancer metasta-
sis to the liver, but not to the lungs, where TSP-1
was cleaved less efficiently [124].
In human fibroblasts, N terminomics analysis

identified TSP-1 as a substrate of ADAMTS-3, but
not ADAMTS-2 or ADAMTS-14 [125]. ADAMTS-7-
generated fragments of TSP-1 inhibited reendotheli-
alization after injury of the carotid artery [126], con-
firming the biological importance of the TSP-
ADAMTS axis in the regulation of vascular remodel-
ing in different settings.
The type 2 repeats domain of COMP binds the

four C-terminal TSP-1-like repeats of ADAMTS-7
[127] and ADAMTS-12 [128]. Both proteases
degrade COMP, generating fragments with a molec-
ular mass similar to the COMP fragments in the
synovial fluid of patients with arthritic diseases
[127,128]. ADAMTS-4 too was reported to degrade
COMP in vitro [129], and in a proteomic analysis of
ECM proteolyzed peptides released from human
articular cartilage [119]. This suggests that these
proteases, upregulated in the cartilage and syno-
vium of arthritic patients, are responsible for COMP
degradation associated with loss of articular carti-
lage in arthritic diseases such as osteoarthritis and
rheumatoid arthritis.
BMP-1. Bone morphogenetic protein 1 (BMP-1) is

involved in the maturation of matrix structural pro-
teins and enzymes, controlling matrix assembly dur-
ing cartilage and bone formation, wound healing and
tissue repair and fibrosis. Among several other sub-
strates, including ECM components, cytokine and
growth factor precursors, BMP-1 cleaves TSP-1.
Cleavage occurs at a site between the VWFC and
the type 1 repeats domains (residues S375-D376, a
site conserved in TSP-1 in various species but
absent in TSP-2) and results in the release of a tri-
meric 50 kDa fragment and a soluble monomeric
120 kDa fragment [130]. The 120 kDa fragment did
not support cell adhesion but efficiently activated
TGF-b and promoted the differentiation of primary
keratocytes into myofibroblasts, with a substantial
role in corneal wound healing and scar formation
[130]

Serine peptidases

Serine proteases account for about one third of
human proteases. They are involved in development
and in major physiological processes. Deregulation
of expression, activation or proteolytic activity have
been associated with pathological conditions,
including response to bacterial infections, inflamma-
tion, arthritis, angiogenesis-driven diseases, and
cancer, where they contribute to extracellular matrix
remodeling and TME organization, and mediate the
activity of immune cells [131,132].

Neutrophil serine proteases. Proteases released
by neutrophils, particularly elastase (ELANE),
cathepsin G and MMP-9, can support cancer pro-
gression by acting in the TME of the primary tumor,
but also by contributing to the premetastatic niche at
distant organs [133]. Neutrophil serine proteases
released locally during inflammation rapidly degrade
a number of glycoproteins, including TSP, FN, and
VWFC, in a native subendothelial matrix [134]. TSP-
1 is very sensitive to cathepsin G, elastase 2 (neu-
trophil elastase), and plasmin, which released solu-
ble fragments of approximately 150 kDa (C-term)
and 24�27 kDa (HBD) [134]. Neutrophil cathepsin
G cleaves platelet- or endothelial cell-derived TSP-1
at residues R255-T256, releasing a trimeric C-termi-
nal fragment [105]. This fragment was more potent
than intact TSP-1 in promoting platelet adhesion to
collagen and string formation under flow [105]. The
formation of neutrophil extracellular trap (NETs) was
associated with increased generation of the
160 kDa fragments, and protection of the TSP-1
from further degradation [105]. A recent study con-
firmed that NETs, formed by neutrophils in the lung
metastatic niche, could degrade TSP-1 through a
process requiring elastase [135]. Thus, neutrophil-
mediated degradation of the antiangiogenic TSP-1
[60] might contribute to the pro-metastatic role of an
inflammatory environment in the lung [22,135].

In a feedback mechanism of regulation, sequen-
ces in the type 3 repeats of TSP-1 have been
reported to inhibit the catalytic activity of serine pro-
teases, including plasmin, cathepsin G, and elas-
tase [87,88,136], suggesting a mutual functional
control between TSP-1 and neutrophil proteases,
and a role for TSP-1 in restraining neutrophil
response in different phases of inflammation, hemo-
stasis and response to bacterial infections [61,137].
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FAP. Fibroblast activation protein-alpha (FAP) is a
cell surface, constitutively active serine protease,
with both dipeptidylaminopeptidase and endopepti-
dase activities. It is upregulated in activated fibro-
blasts during tissue remodeling, fibrosis,
atherosclerosis, arthritis and cancer. A recent
TAILS-based degradomic analysis in mouse embry-
onic fibroblasts expressing or not FAP identified
FAP cleavage sites in several ECM-associated pro-
teins, including TSP-1 and TSP-2. FAP cleaved
murine TSP-2 at E306-L307 in the oligomerization
domains, the same site cleaved by ADAMTS-1
[138].
Granzyme B is mainly produced by immune cells

(NK cells, cytotoxic T cells), but is also expressed by
other cell types, including different tumor cell types.
Besides its role in immune cell-mediated death of
infected or cancerous cells, granzyme B has non-
cytotoxic activities in processes such as inflamma-
tion, angiogenesis, fibrosis, and extracellular matrix
remodeling, related to the ability to cleave extracellu-
lar matrix components, receptors, cytokines, and
angiogenic factors. Its presence in cancer tissues
has been associated with either favorable clinical
outcome or poor prognosis and therapy resistance
[139,140]. A recent study indicated that TSP-1 and
TSP-2 are substrates of granzyme B in age-related
macular degeneration (AMD) [141]. Cell-free cleav-
age assays showed the formation of multiple TSP-1
and TSP-2 fragments, in agreement with the in-silico
prediction of several cleavage sites in the N-term,
Ca and G domains of both TSP-1 and TSP-2. Since
aspartates in some of the putative cleavage sites in
the Ca domain (position 848, 865, 937 in TSP-1 and
791, 852, and 867 in TSP-2) are involved in the
coordination of calcium ions [86,142], calcium con-
centrations might modulate the accessibility of these
sites and hence cleavage. TSP-1 levels and inhibi-
tory activity in an explant choroid sprouting assay
were reduced by granzyme B, suggesting that deg-
radation of the anti-angiogenic TSP-1 by extracellu-
lar granzyme B may contribute to AMD-related
choroidal neovascularization.
HTRA1. The serine peptidase high-temperature

requirement protein A1 (HTRA1) is considered a key
factor in several vascular diseases including AMD. It
cleaves TSP-1, releasing an N-terminal pro-angio-
genic fragment [143,144]. TAILS analysis identified
the cleavage site at V215-R216, with release of the
proangiogenic 25�30 kDa fragment [143]. In line
with the reported ability of TSP-1 to inhibit serine
protease activity, the proteolytic activity of HTRA1
was completely inhibited in the presence of TSP-1
[143], pointing to mutual regulation between HTRA1
and TSP-1 in matrix remodeling and neovasculariza-
tion in AMD.
HTRA1 is the most abundant protease in the oste-

oarthritis cartilage. Degradomic analysis of HTRA1-
treated cartilage identified several COMP fragments,
cleaved at multiple sites, corresponding to COMP
fragments identified in osteoarthritic cartilage [145].

Kallikreins. Kallikrein-related peptidases (KLKs)
are la large family of secreted serine proteases, that
play a role in processes spanning form skin homeo-
stasis to neural development, angiogenesis, and
innate immunity [131]. Although usually expressed
by cancer cells, KLKs can be expressed also by
cells in TME, including endothelial and immune cells
(neutrophils and T cells) [146]. They are released in
the TME, where their proteolytic activity controls
TME organization, metastasis, angiogenesis,
immune suppression, and resistance to therapies in
several cancer types [131,146].

PROTOMAP approaches identified TSP-1 among
the targets of KLK4 and KLK7 [147,148]. KLK4
degraded TSP-1 in the conditioned media of pros-
tate cancer cells and in the matrix deposed by osteo-
blasts, releasing proangiogenic N-terminal
fragments, potentially contributing to the tumor pro-
moting activity of KLK4 in this tumor type [147]. In an
ovarian cancer model KLK7 was able to cleave
TSP-1 at two distinct sites, one at Y258-I259 releas-
ing the N-terminal 28 kDa fragment and a second
one at Y665-L666 in the type 2 repeats domain, con-
ceivably releasing fragments spanning from the
VWFC domain to the type 2 repeats and a fragment
comprising the type 3 repeats and the globular C-
term [148]. In a prostate cancer model, KLK15 was
reported to degrade a number of ECM-related pro-
teins, including TSP-1, acting at different sites and
releasing multiple fragments [149].

Thrombin, plasmin and chymotrypsin. TSP-1 is
cleaved by thrombin, plasmin and chymotrypsin
within the VWFC homology domain, releasing the N-
terminal domain [134,150]. Early studies used pro-
teolytic cleavage of TSPs as a tool to identify active
domains. Thrombin-generated fragments of TSP-1
showed opposite effects in angiogenesis. The
25 kDa N-terminal fragment promoted angiogenesis,
increasing endothelial cell invasiveness, through
activation of MMP-2 and reduction of TIMP-2 syn-
thesis [18] whereas the 140-kDa C-terminal frag-
ment inhibited angiogenesis through multiple
mechanisms and active sites, including interaction
with CD36, CD47, angiogenic factors and proteases
[15,16,151].

A chymotrypsin-like serine protease was respon-
sible for the release of a 26-kDa fragment, corre-
sponding to the heparin-binding domain, in
apoptotic monocytes [152]. This fragment promoted
clearance of apoptotic cells by inducing a phagocytic
state in dendritic cells [68].

“Orphan” fragments (for which the protease
responsible has not been identified)

Several proteomic studies have identified frag-
ments of TSPs associated with specific diseases,
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although the proteases responsible for cleavage
have not been identified. Analytical approaches based
on labeling and enriching for N- or C-terminal peptides
have revealed proteolytic fragments of TSPs, including
TSP-1 and TSP-4, in vivo in human serum [153].
The release of platelet TSP-1, associated with a

process of wound healing, was accompanied by pro-
teolytic degradation, with the generation of a 140 kDa
fragment detectable in the circulation up to three days
after surgery [154]. Similarly, a 160 kDa TSP-1 frag-
ment was detected in human plasma one day after sur-
gical resection of liver metastasis [105]. A high-
molecular-weight C-terminal fragment was observed,
associated with vessels, in diabetic rats [155].
A C-terminal 60 kDa fragment of TSP-1, which

included the calcium-binding type 3 repeats, was iden-
tified as a component of cytotoxic supramolecular
attack particles (SMAPs) released by cytotoxic T lym-
phocytes [54] and NK cells [55]. The TSP-1 fragment
was associated with the SMAP glycoprotein shell that
surrounds a cytolytic core made of perforin and gran-
zyme-B. The TSP-1 fragment contributed to CTL target
killing. The finding that SMAPs are preassembled in
specialized lysosomes within the cell [54] adds to the
growing evidence of intracellular interactions and activ-
ities of typically extracellular TSP-1 [156].
Fragments of TSP-1 and TSP-4 were detected by

a subtiligase-based enrichment approach in apopto-
tic cells exposed to different chemotherapeutic
drugs. Cleavage was not due to the activity of the
cysteine protease caspases [157]. However, evi-
dence that a TSP family member is a substrate of
caspases was provided by the group of JA Wells,
who identified COMP proteolytic fragments in leuke-
mia cells exposed to exogenous caspase-6, but not
caspase-2 [158].
Conclusions

Controlled proteolytic cleavage of thrombospon-
dins is a critical mechanism to tune their functions in
different biological settings. The functional conse-
quences are manifold, including alteration in TSP-
interaction with the ECM (e.g. following trypsin
digestion), modulation of the activity and availability
of growth factors and cytokines (e.g. activation of
TGF-b by a BMP-1-generated fragment of TSP-1),
disruption/exposure of active TSP sequences (e.g.
disruption of CD36-binding sequence of TSP-1 by
MMP14 and release of a fragment active in inflam-
matory bowel disease, where entire TSP-1 was inac-
tive), local release of active TSP fragments (e.g.
proangiogenic / antiangiogenic fragments released
by ADAMTS-1, HTRA-1, KLK4, granzyme B, and
thrombin), and alteration in the composition and
function of multi-molecular interaction networks by
physical separation of the TSP binding sites for dif-
ferent ligands.
In a mechanism of mutual functional control, pro-
teases cleave and regulate the activity of TSPs and,
in turn TSPs can act as inhibitors of proteolytic
enzymes, as in the case of TSP-1 interaction with
HTRA1 during matrix remodeling and neovasculari-
zation in AMD [143]. In other cases, the inhibitory
effect of TSPs can have a protective effect. For
example, TSP-1 inhibition of neutrophil elastase and
cathepsin G might control the innate immune
response and protect against proteolytic tissue injury
in microbial infections [61,62]. Inhibition of proteases
can also contribute to TSP-1 antiangiogenic activity,
through the reduction of MMP-9-mediated release of
matrix-bound VEGF [159].

TSPs can control proteolysis directly, as reported
for TSP-1, which inhibits MMP-2 [160], neutrophil
elastase and cathepsin G [87,87] or for COMP,
which inhibits thrombin [161]. TSP inhibition of pro-
teolytic processes can also be indirect, through bind-
ing of the substrates, such as VWFC, protected from
cleavage by ADAMTS13 [162,163], or PDGF, pro-
tected by TSP-1 from proteolytic degradation by
thrombin and proteases produced by mesenchymal
stromal cells [71].

Finally, TSPs can also modulate the activity of
proteases by affecting the expression of proteases
and protease inhibitors. For instance, TSP-1
reduces the expression of tissue inhibitors of metal-
loproteinases-1 (TIMP1) in macrophages [164] and
TIMP-2 in endothelial cells [18].

In conclusion, the relationship between TSPs and
proteases is extremely complex, strictly controlled
and regulated by mutual influences. It forms a com-
plex, multiplayer system that dynamically tunes the
activity of matricellular proteins and proteases in
physio-pathological settings, and particularly in can-
cer. Deeper knowledge of the occurrence and activ-
ity of proteolytic fragments of TSPs might improve
our understanding of disease pathogenesis and pro-
gression. The development and wider use of proteo-
mic-degradomic approaches will be fundamental to
define the profile of proteolytic fragments of TSPs,
and of other matricellular and matrix proteins in spe-
cific diseases. The identification of fragments with
beneficial activity would lay the ground for the
design of new therapeutic tools.
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