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Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disorder characterized by the progressive 
loss of motor neurons, with genetic and environmental factors contributing to its complex pathogenesis. 
Dysregulated immune responses and altered energetic metabolism are key features, with emerging evidence 
implicating the gut microbiota (GM) in disease progression. We investigated the interplay among genetic 
background, GM composition, metabolism, and immune response in two distinct ALS mouse models: 129Sv_G93A 
and C57Ola_G93A, representing rapid and slow disease progression, respectively.

Using 16 S rRNA sequencing and fecal metabolite analysis, we characterized the GM composition and 
metabolite profiles in non-transgenic (Ntg) and SOD1G93A mutant mice of both strains. Our results revealed 
strain-specific differences in GM composition and functions, particularly in the abundance of taxa belonging to 
Erysipelotrichaceae and the levels of short and medium-chain fatty acids in fecal samples. The SOD1 mutation 
induces significant shifts in GM colonization in both strains, with C57Ola_G93A mice showing changes resembling 
those in 129 Sv mice, potentially affecting disease pathogenesis. ALS symptom progression does not significantly 
alter microbiota composition, suggesting stability.

Additionally, we assessed systemic immunity and inflammatory responses revealing strain-specific differences in 
immune cell populations and cytokine levels.

Our findings underscore the substantial influence of genetic background on GM composition, metabolism, and 
immune response in ALS mouse models. These strain-specific variations may contribute to differences in disease 
susceptibility and progression rates. Further elucidating the mechanisms underlying these interactions could offer 
novel insights into ALS pathogenesis and potential therapeutic targets.
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Introduction
Amyotrophic Lateral Sclerosis (ALS), a neurodegen-
erative disorder characterized by the progressive loss of 
motor neurons, entails a multifaceted interplay of genetic 
and environmental factors, underpinning its diverse 
clinical manifestations [25]. This complexity is marked 
by substantial genotypic and phenotypic heterogene-
ity, extending beyond motor neurons. This variability 
underscores the complexity of the disease and highlights 
the need for comprehensive investigations to unravel its 
underlying mechanisms [29]. The pathophysiology of 
ALS implicates a dysregulated immune system, evidenced 
by neuroinflammation, involving both resident and 
peripheral immune cells, which contributes to disease 
progression [5, 18]. Central and peripheral inflammatory 
mechanisms are significant contributors to ALS, both in 
the context of specific genetic mutations and probably as 
a consequence of the general disease process in sporadic 
cases [17, 47]. However, the role of the immune system in 
ALS is complex; initially protective responses are even-
tually overridden by cytotoxic processes [5, 48]. Another 
significant aspect of ALS pathology involves the altera-
tion of energetic metabolism, particularly lipid metabo-
lism, exacerbating its complexity [48]. In many patients, 
there is evidence of a hypermetabolic state that correlates 
with a more severe lower motor neuron involvement, 
accelerated functional decline, and shorter survival times 
[10]. Skeletal muscles suggested as the origin site of this 
metabolic alteration, exhibit increased energy demand 
due to chronic denervation, further exacerbating fat 
mass depletion [40]. Furthermore, ALS is characterized 
by alterations in plasma lipid levels and changes in fatty 

acid β-oxidation [8, 64]. Interestingly, hyperlipidemia is 
associated with increased survival rates, possibly due to 
the protective effect of elevated lipid levels in circulation 
[22]. The exact mechanisms underlying hyperlipidemia in 
ALS remain unclear but could involve mitochondrial dys-
function [23].

Such intricacies prompt exploration into potential 
contributors, including the gut microbiota (GM) and its 
modulation of metabolism and immune responses. GM 
has garnered attention in neurological conditions for its 
capacity to influence brain function and disease progres-
sion. Evidence has implicated GM dysbiosis in driving 
ALS features and progression, both in patients and in 
animal models [7, 11, 20, 27, 53]. Notably, previous stud-
ied in superoxide dismutase 1 (SOD1) transgenic mice, 
an established ALS animal model, have unveiled altera-
tions in the gut barrier, abnormal Paneth cell presence, 
and changes in gut microbial composition, implicating 
the GM in ALS [63, 69]. Moreover, alterations of micro-
bial metabolites may affect ALS by immune cell activa-
tion or cell polarization (regulatory versus effector cells) 
possibly sustaining neuroinflammation and neuron 
degeneration [45]. Furthermore, GM contributes signifi-
cantly to regulating the energetic metabolism, suggesting 
another potential association between GM and disease 
progression [45]. For instance, the GM plays a role in 
converting primary bile acids into secondary bile acids, 
which are essential for lipid digestion in the gastrointes-
tinal tract and interact with receptors that regulate host 
metabolism. Additionally, GM composition influences 
the levels of free fatty acids (FFAs) in the body, serving as 
essential energy sources for tissues and regulators of the 
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inflammatory response [37]. Studies conducted in SOD1 
mice have demonstrated significant metabolic dysfunc-
tion associated with changes in GM composition [61]. 
Moreover, Guo and colleagues have recently found dis-
parities in the GM composition between ALS cases and 
controls, with correlations observed between specific 
genera and plasma metabolites, particularly lipids [32]. 
These insights underscore the potential significance of 
GM-mediated metabolic alterations in ALS pathogenesis, 
suggesting avenues for further exploration into the intri-
cate interplay between gut health, metabolic dysregula-
tion, and neurodegeneration in this devastating disease.

Transgenic mice expressing various human SOD1 
mutations closely mimic clinical and pathological fea-
tures of human ALS, including significant phenotypic 
variability in terms of onset age and disease progression 
speed [6, 35]. Particularly intriguing are mice carrying 
the SOD1G93A transgene on different strains [51]. Despite 
expressing the same quantity of the human mutant SOD1 
protein [41, 42], those on 129SvHsd genetic background 
(129Sv_G93A, denoted as fast-progressing) exhibit a con-
siderably swifter disease course compared to those on 
the C57BL/6JOlaHsd background (C57Ola_G93A, slow-
progressing), underscoring the substantial influence of 
genetic background on modulating ALS progression [57]. 
Transcriptomic analyses of laser-dissected lumbar motor 
neurons have further highlighted significant gene expres-
sion differences in pathways related to metabolism, pro-
tein degradation, and immune response [50]. In addition, 
metabolomic analysis of the spinal cord of two mouse 
strains evidenced substantial metabolic effects relating 
to genetic background which may contribute to ALS pro-
gression differences between the two SOD1G93A strains 
[68]. More recently, we demonstrate an important influ-
ence of the immune response in determining the differ-
ent onset and progression of the disease in these mice 
[41, 66].

Given the bidirectional impact of immunity on the 
composition and function of the microbiota, our study 
delved into the influence of genetic background on the 
composition of the GM, the fatty acid metabolism and 
the immune response in fast and slow-progressing SOD1 
G93A mouse models. Our findings unraveled the intricate 
interconnections of these biological processes that may 
contribute to the nuanced landscape of ALS progression 
and its variability.

Materials and methods
Animals management and sample collection
Female transgenic 129SvHsd (129Sv_G93A) (n = 8), 
C57BL/6JOlaHsd (C57Ola_G93A) (n = 8) and their cor-
responding non-transgenic littermates (n = 10 and n = 8, 
respectively) have been used in this study. Mice have 
been maintained at a temperature of 21 ± 1  °C with a 

relative humidity of 55 ± 10% and a 12 h light/dark cycle. 
Food (standard pellets) and water will be supplied ad 
libitum. Procedures involving animals and their care 
has been conducted according to the Mario Negri insti-
tutional guidelines, which are compliant with national 
(D.L. no. 116, G.U. suppl. 40, Feb.18, 1992, Circular 
No.8, G.U., 14 July 1994) and international policies (EEC 
Council Directive 86/609, OJ L 358, 1 Dec.12, 1987; NIH 
Guide for the Care and use of Laboratory Animals, U.S. 
National Research Council, 1996). All experiments and 
protocols will be examined by the Institutional Ethi-
cal Committee and authorized by the Italian Ministry 
of Health. The mice have been bred and maintained in a 
specific pathogen-free environment. Animals with sub-
stantial motor impairment had food on the cage bottom 
and water bottles with long drinking spouts.

Blood and faeces have been collected from 129Sv_
G93A mice or C57Ola_G93A mice and age-matched Ntg 
littermates at pre-symptomatic (PS = 12 weeks for both 
models), onset (OS = 14 or 18 w age, respectively) and 
symptomatic (SY = 16 or 22 w age, respectively) stage. To 
avoid any bias, mice were separated by strain (C57Ola Vs. 
129  Sv) and genotype (NTg Vs. SOD1G93A) (No. 4 per 
cage) and sampling was done per mouse by taking fresh 
blood and faeces at the defined timepoints.

Faecal microbiota characterization
Total DNA was extracted using the DNeasy PowerLyzer 
PowerSoil Kit (Qiagen, Hilden, Germany) from frozen 
(-80  °C) stool samples, according to the manufacturer’s 
instructions. Briefly, 0,25 g of stool samples were added 
to a bead beating tube and homogenized with TissueLy-
ser II for five minutes at 30 Hz. Genomic DNA was cap-
tured on a silica membrane in a spin column format, 
washed and subsequently eluted. The quality and quan-
tity of extracted DNA were assessed with the Qubit Fluo-
rometer (Thermo Fisher Scientific) and then frozen at 
-20 °C.

Subsequently, DNA samples were sent to IGA Tech-
nology Services (Udine, Italy) where amplicons of 
the variable V3–V4 region of the bacterial 16s rRNA 
gene, obtained through primers 341  F and 805R, were 
sequenced in paired-end (2 × 300 cycles) on the Illumina 
MiSeq platform, according to the Illumina 16 S Metage-
nomic Sequencing Library Preparation protocol.

The demultiplexed sequence reads were processed in 
QIIME2 2022.8 environment. Briefly, the sequencing 
primers and the reads without primers were removed 
using the Cutadapt tool. DADA2 was used to per-
form paired-end reads filtering, merging and chimeras’ 
removal steps after trimming low-quality nucleotides 
from both forward and reverse reads (--p-trunc-len-
f 274 --p-trunc-len-r 169). Hence, ASVs (amplicon 
sequence variants) were generated, and the taxonomic 
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assignments were performed through the Scikit-learn 
multinomial naive Bayes classifier re-trained on SILVA 
database (release 138) V3-V4 iper-variable region. Every 
cross-amplified host DNA has been identified and 
removed, aligning the ASVs to GRCm39 (murine refer-
ence genome) using Bowtie2 2.2.5. Moreover, the ASV 
derived from chloroplasts or mitochondria, according to 
SILVA, were also discarded. Finally, every ASV associated 
with genera with mean relative abundance across the 
samples under the cutoff of 0.005% have been discarded 
to minimize sequencing contaminants and improve sta-
tistical inferences [9, 12]. Finally, the potential expression 
of microbial pathways in each sample were estimated 
using PICRUSt2 v 2.5. Further details about the FASTQ 
processing are available at ​h​t​t​​p​s​:​/​​/​g​i​​t​h​​u​b​.​​c​o​m​/​​L​e​a​​n​d​​r​o​D​
9​4​/​P​a​p​e​r​s​/​t​r​e​e​/​m​a​i​n​/​2​0​2​4​_​S​L​A​_​m​i​c​e​_​F​a​s​t​1​2​9​S​v​_​S​l​o​w​C​
5​7​_​G​9​3​A​​​​​.​​

Short and medium chain fatty acids analysis
The evaluation of short and medium chain fatty acids 
(SCFA and MCFA, respectively) and the standard curves’ 
preparation was performed on stools of 12 weeks age 
mice, by an Agilent GC-MS system composed of a 5971 
single quadrupole mass spectrometer, 5890 gas chro-
matograph and 7673 autosampler, through our previ-
ously described GC-MS method [52].

Immunophenotype analysis in blood
Peripheral blood mononuclear cells (PBMCs) were iso-
lated from whole blood with Lymphosep (L0560, Biow-
est) according to manufacturer instructions and stained 
with the following antibodies: BUV 661 rat anti-mouse 
CD45 (612975, BD Biosciences), BUV395 rat anti-CD11b 
(563553, BD Biosciences), BV421 anti-mouse Ly6G 
(127627, Biolegend) and FITC anti-mouse Ly6C (128005, 
Biolegend). Events were acquired with Cytoflex LX 
(Beckman Coulter) using the gating strategy showed in 
the Figure S4. Flow cytometry data were analyzed using 
FlowJo™ v10.8 Software (BD Life Sciences).

Molecular inflammatory response evaluation
Serum cytokines (IL-1Beta, IL-6, IL-17, KC/IL-8, mono-
cyte chemotactic protein 1 (MCP-1) and, tumor necro-
sis factor-α (TNF alpha)) were assayed in 5 mice/group 
using the Milliplex Map kit Mouse cytokine/chemokine 
magnetic bead panel for the Luminex MAGPIX detection 
system (Merck) following the manufacturer’s instruc-
tions. Cytokine levels were estimated using a 5-param-
eter polynomial curve with Bio-plex Manager software 
(Biorad).

Statistical analyses
Continuous variables were presented as median value 
and interquartile range (calculated as the difference 

between the 75th and 25th percentiles of the data) and 
were compared using the non-parametric Mann–Whit-
ney test.

The statistical analyses on bacterial communities were 
performed in R 4.3 with the help of the packages phylo-
seq 1.44.0, vegan 2.6-4, DESeq2 1.40.1 and other pack-
ages satisfying their dependencies. The packages ggplot2 
3.4.2, ggh4 × 0.2.2 and ggpubr 0.40 were used to plot data 
and results. A saturation analysis on ASV was performed 
on every sample using the function rarecurve (step 50 
reads), further processed to highlight saturated samples 
(arbitrarily defined as saturated samples with a final slope 
in the rarefaction curve with an increment in ASV num-
ber per reads < 1e-5). The observed richness and Shannon 
indices were used to estimate the bacterial genera alpha-
diversity in each sample using the function estimate_
richness from phyloseq. The Pielou’s evenness index was 
calculated using the formula E = S/log(R), where S is the 
Shannon diversity index, and R is the observed ASV rich-
ness in the sample. Differences in alpha-diversity indices 
were inspected through the Mann-Whitney test. PCoAs 
were performed using the Hellinger distance on Hellinger 
transformed genera abundances. PERMANOVA and 
Betadisper were used to test the statistical significance 
of the beta-diversity distances and dispersions. At dif-
ferent taxonomic ranks, the differential analysis (DA) of 
the abundances has been computed with DESeq2 on raw 
count data, and only the results with a p-value (adjusted 
through Benjamini-Hochberg method) lower than 0.01 
were considered significant. Furthermore, differentially 
abundant taxa with a DESeq2 baseMean value lower 
than 100 have been discarded from the displayed results, 
irrespective of their statistical significance, to limit noisy 
results. Finally, the algorithm Lefse v 1.1.2 was utilized to 
compare the expression of microbial pathways predicted 
by PICRUSt2 between genotypes and strains. Spear-
man correlation coefficients were calculated to evaluate 
the association between fatty acids and bacterial taxa; 
p-values were corrected for multiple comparisons using 
the Benjamini-Hochberg FDR procedure. Further details 
about the analyses regarding the microbiota are available 
at ​h​t​t​​p​s​:​/​​/​g​i​​t​h​​u​b​.​​c​o​m​/​​L​e​a​​n​d​​r​o​D​9​4​/​P​a​p​e​r​s​/​t​r​e​e​/​m​a​i​n​/​2​0​
2​4​_​S​L​A​_​m​i​c​e​_​F​a​s​t​1​2​9​S​v​_​S​l​o​w​C​5​7​_​G​9​3​A​​​​​.​​

Results
Distinct microbiota profiles in non-transgenic C57Ola and 
129 sv strains
The sequencing efforts in assessing microbiota compo-
sition encompassed a total of 13,650,526 reads for 101 
samples. After all the steps of pre-processing (pair merg-
ing, trimming, quality filtering, chimera detection) and 
decontamination, a total of 6,969,470 (51%) were avail-
able for further analysis. Saturation curves revealed that 
every specimen was sufficiently sampled (Figure S1). 

https://github.com/LeandroD94/Papers/tree/main/2024_SLA_mice_Fast129Sv_SlowC57_G93A
https://github.com/LeandroD94/Papers/tree/main/2024_SLA_mice_Fast129Sv_SlowC57_G93A
https://github.com/LeandroD94/Papers/tree/main/2024_SLA_mice_Fast129Sv_SlowC57_G93A
https://github.com/LeandroD94/Papers/tree/main/2024_SLA_mice_Fast129Sv_SlowC57_G93A
https://github.com/LeandroD94/Papers/tree/main/2024_SLA_mice_Fast129Sv_SlowC57_G93A
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Samples showed a Good’s coverage ranging from 99 to 
100%, indicating that less than 1% of the reads in a given 
sample came from ASVs, that appeared only once in that 
sample. The subsequent taxonomic analysis, detailed in 
Table S1, identified nine phyla, 12 classes, 26 orders, 41 
families and 89 genera. In all samples, the top five phyla 
exhibited the following average abundances: Firmicutes 
(47.9%), Bacteroidota (40.2%), Campilobacterota (6.2%), 
Desulfobacterota (1.8%), and Actinobacteriota (1.3%) 
(Figure S2A). The ten most abundant genera were Muri-
baculaceae (27.2%), Lactobacillus (21.3%), Helicobacter 
(6.2%), an unidentified genus of Lachnospiraceae fam-
ily, (4.3%), NK4A136_group of Lachnospiraceae (3.9%), 
Dubosiella (3.7%), Alistipes (2.9%), Bacteroides (2.8%), 
Odoribacter (2.5%), and an uncultured genus of Lachno-
spiraceae (2.1%) (Figure S2B).

The microbiota composition between non transgenic 
C57Ola and 129 Sv strains exhibited notable distinctions. 
Specifically, at 12 weeks of age, C57OlaNtg and 129SvNtg 
mice displayed divergent microbiota profiles. Analysis 
of alpha diversity indicated that in the 129 Sv strain, the 
microbiota did not exhibit a significantly higher ASV 
richness but a greater abundance uniformity as evi-
denced by the Evenness index (p = 0.034) compared to the 

C57Ola strain (Fig. 1A). More importantly, beta diversity 
analysis revealed a highly significant separation in micro-
biota composition between the two strains, as demon-
strated by a very low p-value in the PERMANOVA test 
(p = 0.0001) (Fig.  1B), highlighting the distinct microbial 
communities associated with each genetic background.

In-depth univariate analysis disclosed differences in 
abundances at specific taxonomic levels. Within these 
disparities, the 129SvNtg mice exhibited a notable 
increase in Clostridia (log2FC=-1.41, padj = 0.006) and 
genera belonging to the Lachnospiraceae family, such 
as Roseburia (log2FC=-2.52, padj = 0.0006), an uniden-
tified genus of Lachnospiraceae clade (log2FC=-1.9, 
padj = 0.0015), and A2 genus (log2FC=-5.35, p < 0.0001) 
compared to C57OlaNtg. Conversely, there was a 
decrease in the Erysipelotrichaceae family (Bacilli) 
(log2FC = 6.01, p < 0.0001), especially Dubosiella 
(log2FC = 14.92, p < 0.0001) and Faecalibaculum 
(log2FC = 12.46, p < 0.0001) genera, and in the Corio-
bacteriaceae_UCG-002 genus (log2FC = 9.93, p < 0.0001) 
(Fig.  1C). We also detect differences in the fecal lev-
els of short and medium-chain fatty acids. In detail, the 
percentage of total MCFA (p = 0.041), heptanoic acid 
(p = 0.049) and dodecanoic acid (p = 0.044) were higher 

Fig. 1  Comparative Analysis of Microbiota Composition and Metabolic Profiles in C57Ola_Ntg and 129Sv_Ntg Mice at 12 weeks’ age. (A) Boxplots 
showcasing alpha diversity indices (Observed Richness, Shannon index, Evenness) in fecal samples. Statistical differences were evaluated using a paired 
Wilcoxon signed-rank test. P-values less than 0.05 were considered statistically significant. (B) Principal coordinates analysis (PCoA) according to the 
Hellinger distance computed on genera abundances. Results of the permutational multivariate analysis of variance (PERMANOVA) are also shown based 
on the first two coordinates. (C) Circular heatmap representing the differentially abundant taxa in C57Ola versus 129 Sv mice samples: concentric circles 
represent taxonomic ranks from phylum (P) to genus (G); yellow shades indicate positive logFC values, whereas blue shades indicate negative logFC val-
ues correlations; the intensity of colors is proportional to logFC values. (D) Box plot reporting the statistically significant different free fatty acids among 
the two Ntg strains. (E) Computed Linear Discriminant Analysis (LDA) scores representing significantly differential KEGG Pathway Expression (LDA > 2.5) 
between 129Sv_Ntg and C57Ola-Ntg mice
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whereas the level of propionic acid (p = 0.020) was lower 
in 129SvNtg mice than C57OlaNtg, (Fig.  1D). To cor-
roborate these findings, functional prediction analysis 
using PICRUSt revealed differential expression of sev-
eral KEGG pathways between the two strains. Specifi-
cally, in C57OlaNtg mice, pathways related to fatty acid 
degradation, lipoic acid metabolism, ubiquinone and 
other terpenoid-quinone biosynthesis were more abun-
dant. Conversely, in 129SvNtg mice, pathways associated 
with beta-lactam resistance, biosynthesis of vancomy-
cin group antibiotics, and ABC transporters were more 
abundant (Fig. 1E).

Additionally, the temporal stability of the microbiota 
within each strain was examined over time. Supplemen-
tary figures depicting beta diversity at different ages for 
both C57OlaNtg and 129SvNtg mice illustrated that, in 
each strain, the microbiota composition remained rela-
tively consistent as the mice aged (see Fig. 3 : Beta diver-
sity at different ages for each strain, C57Ola Ntg, and 
129 Sv Ntg).

The presence of the human mutant SOD1G93A exerts an 
influence on gut microbial colonization
The presence of the SOD1 mutation induced significant 
shifts in GM colonization before the onset of the dis-
ease in both strains, with changes particularly evident 
in C57-G93A mice compared to their Ntg counterparts. 
At 12 weeks of age, C57Ola-G93A mice exhibited sig-
nificant differences in microbiota composition compared 
to their Ntg littermates, as indicated by beta diversity 
analysis (PERMANOVA = 0.0001) (Fig.  2A), while alpha 
diversity did not show significant differences (data not 
shown). Furthermore, DESeq analysis unveiled a sig-
nificant decrease in specific microbial taxa in G93A 
mice, including Erysipelotrichaceae (log2FC = 5.11, 
padj < 0.0001) family, NK3B31_group of Prevotellaceae 
(log2FC = 8.89, padj < 0.0001), Dubosiella (log2FC = 11.97, 
padj < 0.0001), and Faecalibaculum (log2FC = 9.92, 
padj < 0.0001) (Fig.  2B) genera. The fecal levels of total 
MCFA (p = 0.005), heptanoic acid (p = 0.010), dodecanoic 
acid (p = 0.013) and decanoic acid (p = 0.039) were higher 
in C57Ola_G93A mice compared to C57OlaNtg, while 
the propionic acid was lower (p = 0.0152) (Fig. 2D). Inter-
estingly, in C57Ola_G93A, we observed negative cor-
relations between the abundance of Erysipelotrichaceae 

Fig. 2  Microbiota Differences and Diversity Analyses in C57Ola Strain, Comparing Non-Transgenic (Ntg) and G93A Transgenic Mice at 12 Weeks of Age. 
(A) Principal coordinates analysis (PCoA) according to Hellinger distance computed on genera abundances. (B) Boxplots with the differentially abundant 
taxa. (C) Computed Linear Discriminant Analysis (LDA) scores representing significantly differential KEGG Pathway Expression (LDA > 2.5). (D) Boxplots 
of the significantly different free fatty acids. (E) Heatmap of correlations between MCFA levels and the relative abundance of the Erysipelotrichaceae, 
Dubosiella and Fecalibaculum taxa MCFA = medium chain fatty acids. *p-value < 0.05
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(Rho=-0.91; padj = 0.04) and Dubosiella (Rho=-0.91; 
padj = 0.03) and medium-chain fatty acids (MCFA), 
especially isohexanoic acid (Fig.  2E). PICRUST analysis 
revealed that lipoic acid metabolism was higher in Ntg 
compared to G93A mice (Fig. 2C).

Regarding the 129 Sv strain, subtle differences emerged 
when comparing the microbiome of SOD1G93A mice to 
the Ntg littermates, with a minor yet significant separa-
tion observed in the PCoA plot (PERMANOVA = 0.0299) 
(Fig.  3A). Notably, only the genus UCG-001 of Lach-
nospiraceae displayed a significant decrease in mice 

with the G93A mutation (log2FC = 4.35, padj < 0.0001) 
(Fig.  3B) and no difference was observed in fecal SCFA 
and glycosaminoglycan degradation, as well as other gly-
can degradation pathways, in G93A 129  Sv mice com-
pared to their non-transgenic counterparts (Fig. 3C).

Distinct microbiota profiles in SOD1G93A mutant mice 
strains: strain-specific profiles across disease progression
The presence of the SOD1G93A mutation does not induce 
a shared microbiota profile across the two strains. Both 
C57Ola_G93A and 129Sv_G93A mice exhibit distinct 

Fig. 3  Microbiota Differences and Diversity Analyses in 129 Sv Strain, Comparing Non-Transgenic (Ntg) and G93A Transgenic Mice at 12 Weeks of Age. 
(A) Principal coordinates analysis (PCoA) according to Hellinger distance computed on genera abundances. (B) Boxplots with the differentially abundant 
taxa. (C) Computed Linear Discriminant Analysis (LDA) scores representing significantly differential KEGG Pathway Expression (LDA > 2.5)
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microbial profiles, characterized by significant beta 
diversity (PERMANOVA = 0.0009), with numerous bac-
terial taxa showing differential expression between the 
two strains, across the disease course (refer to Fig.  4). 
Notably, at a pre-symptomatic stage, some of the dif-
ferences observed among the non-transgenic strains 
are present also among SOD1G93A mice, with the 
unidentified genus of Lachnospiraceae clade remain-
ing higher in 129  Sv compared to C57Ola, and the 
Coriobacteriaceae_UCG-002 genus remaining more 
abundant in C57Ola. Conversely, members of the Ery-
sipelotrichaceae family (Dubosiella and Faecalibaculum) 
and fatty acids levels no longer exhibit differential abun-
dance among the SOD1G93A mutated strains. Addition-
ally, it is noteworthy that no pathways related to lipid 
metabolism exhibited differential abundance between 
129Sv_G93A and C57Ola_G93A mice in the functional 
prediction analysis (Fig. 4C).

As disease onset and symptomatic stages progress, 
many differences persist in the microbiota composition 
between the two strains (Fig.  4). Particularly notewor-
thy is the resurgence of Erysipelotrichaceae in C57Ola_
G93A compared to 129Sv_G93A, alongside alterations 
in lipid metabolism. Remarkably, at the symptomatic 

stage, C57Ola mice exhibit an upregulation in fatty acid 
degradation (LDA = 3; p = 0.034) and an increase in the 
synthesis and degradation of ketone bodies (LDA = 3.2; 
p = 0.002), while 129 Sv mice show a rise in fatty acid bio-
synthesis (LDA = 2.9; p = 0.004) (Fig. 4I).

Finally, the temporal microbiota stability was assessed 
over time and, in each SOD1G93A strain, the microbiota 
composition remained relatively consistent throughout 
the disease stages (see Figure S3).

Systemic immunity and inflammatory response
Similar to the microbiota, the systemic immune-pheno-
type profile was significantly different between the two 
Ntg mouse strains at 12 weeks’ age. Notably, in the blood, 
proinflammatory monocytes (Ly6C+) were significantly 
higher in C57Ola_Ntg versus 129Sv_Ntg mice. Con-
versely, the patrolling monocytes (Ly6C−) were higher in 
129Sv_Ntg compared to C57Ola strain (Fig. 5A). For the 
SOD1G93A mice, only the 129  Sv strain showed a dif-
ference compared to their respective NTG mice, with an 
increase in proinflammatory monocytes and a decrease 
in patrolling monocytes at the presymptomatic stage 
(Fig.  5A). No differences were observed in the C57Ola_
G93A mice compared to their respective NTG mice for 

Fig. 4  Temporal analysis of microbiota between C57Ola_G93A and 129Sv_G93A mice. Beta diversity, as well as DESeq2 and PICRUSt2 analysis, were 
conducted at the pre-symptomatic stage (PS) in panels A, B, and C; at disease onset (OS) in panels D, E, and F; and during the symptomatic stage (SY) in 
panels G, H, and I. LDA = linear discriminant analysis
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either monocyte population. At the onset age, significant 
differences in both monocyte populations were still pres-
ent between the NTG of the two mouse strains. How-
ever, the difference between the 129Sv_G93A mice and 
their respective NTG mice was not maintained (Fig. 5B). 
Unfortunately, analysis at the symptomatic stage was hin-
dered by a scarcity of available blood samples from the 
mice.

No statistically significant differences in peripheral 
blood cytokine levels were observed between SOD1G93A 
and Ntg littermates across all examined time points. Also, 
the cytokine levels in both SOD1G93A mice demonstrated 
minimal variation throughout disease progression, except 

for KC/IL-8 that exhibited an increase during the symp-
tomatic stage in C57Ola_G93A mice compared to the PS 
(p = 0.016) and OS (p = 0.026) stages (see Fig.  6). When 
comparing SOD1G93A mice across strains, significant dif-
ferences emerged at the symptomatic stage. Specifically, 
KC levels were significantly higher in C57Ola_G93A 
compared to 129Sv_G93A, indicating a distinct response 
(p = 0.020). Additionally, a discernible, although not sta-
tistically significant trend was observed for TNFα and 
IL-1β, which appeared higher in 129Sv_G93A than 
C57Ola_G93A peripheral blood at onset and symp-
tomatic stages. This suggests a potential strain-specific 

Fig. 6  Serum cytokine levels across different time points and mouse strains. Boxplot showing the serum cytokines levels. Comparison between time 
points and strains were performed by two-way ANOVA using Tukey’s multiple comparisons post-test. * adjusted p value < 0.05

 

Fig. 5  Analysis of circulating monocyte populations across different time points and mouse strains. Proinflammatory monocytes are identified as 
CD45 + CD11b + Ly6C + cells, while patrolling monocytes are defined as CD45 + CD11b + Ly6C- cells. Data are expressed as mean ± SEM of n = 3–4 mice 
per experimental group. °p < 0.05, °°p < 0.01 (129 Sv Ntg Vs 129 Sv G93A, C57 Ntg and C57 G93A); *p < 0.05, **p < 0.01 (129 Sv G93A Vs 129 Sv Ntg, C57 Ntg 
and C57 G93A) by two way-ANOVA with Fisher post-analysis
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variation in the immune response, although the signifi-
cance was not retained after post-test adjustment of p 
values.

Discussion
Recent research highlights the complex relationship 
between gut microbiota and ALS progression, sug-
gesting that dysbiosis and altered metabolites’ profiles 
may contribute to disease progression through mecha-
nisms involving the brain-gut-microbiota axis [7, 15, 
27]. Despite extensive studies, the right causative factors 
remain unclear; however, understanding these dynamics 
may be critical for developing effective diagnostic and 
therapeutic strategies for ALS. Our investigation delved 
into the intricate interplay among genetic factors, GM 
composition, metabolism, and immune response within 
ALS mouse models. Specifically, we analyzed two distinct 
SOD1G93A mice strains, along with their Ntg littermates: 
129Sv_G93A, characterized by rapid disease progression 
and C57Ola_G93A, exhibiting a slower course. This con-
trast highlights the substantial impact of genetic back-
ground on ALS trajectory.

The contribution of the genetic background to the 
microbiota and inflammation
First, we observed strain-specific nuances in microbi-
ota composition and fecal metabolites between C57Ola 
and 129  Sv strains, with taxonomic analysis revealing a 
diverse microbial landscape dominated by Firmicutes, 
Bacteroidota, and Campilobacterota [31, 49]. Previous 
studies suggest that genetic background significantly 
influences GM composition [56]. For example, BALB/c 
mice exhibit greater microbial diversity and distinct com-
positional variations compared to other strains [24, 28, 
36].

The 129  Sv strain displayed a more consistent 
microbial profile, characterized by an increase in 
butyrate-producing taxa from the Clostridia and Lach-
nospiraceae families, and a reduction Erysipelotricha-
ceae genera (Dubosiella and Faecalibaculum) and the 
UCG-002 genus of Coriobacteriaceae family. Differences 
in fecal fatty acid levels was observed, with SCFA and 
MCFA playing essential roles as both energy-supplying 
metabolites and signalling molecules involved in regulat-
ing lipid metabolism. Abnormal levels over time can con-
tribute to inflammation and insulin resistance, potentially 
leading to several diseases, including diabetes, neurode-
generative diseases, and cancer [19, 34]. MCFA, such as 
capric acid and lauric acid, are primarily obtained from 
medium-chain triglycerides in dietary sources like milk 
and plant oils, but can also be produced by GM [59, 60]. 
For instance, yeast strains, like Saccharomyces cerevisiae, 
produce caprylate (C8) via EHT1 and EEB1 genes, which 
facilitate medium-chain fatty acid synthesis [60]. Recent 

studies show that GM can rapidly metabolize MCFA to 
produce energy in the colon, with Erysipelotrichaceae, 
Peptococcaceae, and other taxa positively correlating 
with cecal MCFA concentrations [30]. MCFA are read-
ily absorbed and metabolized in liver mitochondria, pro-
ducing ketone bodies that can enhance cerebral energy 
metabolism during low glucose availability [13, 26, 55]. 
Daily consumption of MCFA, such as coconut oil or tri-
glycerides, has been linked to neuroprotection and cog-
nitive benefits in ALS models [21, 55]. SCFA, produced 
by GM through the fermentation of dietary fibers, modu-
late immune responses via G protein-coupled receptors 
(GPCRs) such as GPR41 and GPR43, improving intesti-
nal barrier integrity and promoting anti-inflammatory 
response [58]. Additionally, SCFAs act as histone deacet-
ylase (HDAC) inhibitors, modulating gene expression 
to support barrier functions and immune cell activation 
[46]. Conversely, MCFAs act primarily through GPR84, 
triggering proinflammatory responses, including che-
motaxis of immune cells, and increased production of 
cytokines like IL-8 and TNFα in response to lipopolysac-
charide (LPS) stimulation [65].

Notably, 129Sv_Ntg mice displayed higher total MCFA 
levels, especially heptanoic acid and dodecanoic acid, 
and a reduction in propionic acid compared to same-age 
C57Ola mice. This discrepancy may stem from inher-
ent genetic variability influencing fatty acid metabolism, 
as129Sv mice have a higher metabolic rate and a fat oxi-
dation capacity [4]. These metabolic differences likely 
contribute to variations in substrate utilization patterns, 
impacting the processing and excretion of MCFA. Fur-
thermore, GM plays a crucial role in modulating dietary 
component metabolism. It is plausible that the GM of 
129 Sv mice possesses specific enzymatic capabilities or 
preferential pathways for metabolizing MCFA, leading 
to alterations in fecal fatty acid profiles. Conversely, dif-
ferences in microbial composition and functionality in 
C57Ola mice may result in distinct metabolic outcomes 
for these fatty acids. Functional prediction revealed that 
C57Ola mice have higher lipid metabolism potential 
possibly linked to the abundance of Erysipelotrichaceae, 
which correlates with MCFA levels [38].

The divergent GM compositions may also contribute to 
differential immune responses; for instance, lower Fae-
calibaculum levels in C57Ola mice corresponded with a 
higher proportion of proinflammatory monocytes com-
pared to 129 Sv mice [71].

Given the observed differences in cytokine levels and 
monocytic profiles between 129 Sv and C57OlaNtg mice, 
we propose a hypothesis regarding the underlying meta-
bolic and immune mechanisms. The higher fecal levels 
of MCFA in 129  Sv mice might indicate lower systemic 
levels of these fatty acids, as MCFA are rapidly absorbed 
and metabolized. This could lead to reduced availability 
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of MCFA in the bloodstream, which may favour a less 
proinflammatory monocytic profile. Conversely, the 
lower fecal levels of SCFA in 129  Sv mice might corre-
spond to higher systemic concentrations, as SCFA are 
efficiently absorbed and promote the patrolling pheno-
type of monocytes, exerting ant-inflammatory effects. 
Alternatively, differential expression of fatty acid recep-
tors could explain these observations. SCFAs and MCFAs 
mediate their effects through receptors such as GPR41, 
GPR43, and GPR84. Higher receptor expression in 129 Sv 
mice might enhance the anti-inflammatory signaling of 
SCFA, even at similar systemic concentrations. In con-
trast, elevated GPR84 expression could influence the 
proinflammatory effects of MCFAs, accounting for the 
higher proinflammatory monocyte levels in C57OlaNtg 
mice. The elevated levels of proinflammatory cytokines 
(e.g., TNF-α and MCP-1) in 129  Sv Ntg mice, despite a 
higher proportion of patrolling monocytes, may indicate 
a compensatory immune response attempting to coun-
terbalance the systemic inflammatory environment. In 
contrast, C57BL/6 Ntg mice, with lower fecal levels of 
MCFA, might retain more of these fatty acids systemi-
cally, contributing to higher levels of proinflammatory 
monocytes and potentially a more direct proinflam-
matory state. Additionally, higher fecal SCFA levels in 
C57Ola mice could indicate lower systemic availability, 
diminishing anti-inflammatory effects. Therefore, the dif-
ferential expression of fatty acid receptors warrants fur-
ther investigation.

These findings suggest a complex interplay between 
gut-derived metabolites and systemic immune responses, 
where the balance of MCFA and SCFA may significantly 
influence the inflammatory status and the phenotypic 
distribution of monocytes. Besides, we demonstrated 
that genetic background may influence differences in 
energetic metabolism and immune response modulation 
capacity of the GM, potentially contributing to variable 
susceptibility to disease. Further studies are needed to 
explore the systemic levels of these fatty acids and their 
mechanisms in modulating immune cell function in dif-
ferent genetic backgrounds, potentially leading to novel 
therapeutic strategies for managing inflammation in ALS.

The contribution of SOD1G93A to the microbiota and 
inflammation
The SOD1G93A mutation influenced GM colonization 
in both strains, albeit to varying extents. In a pre-symp-
tomatic stage, C57Ola_G93A mice exhibited a signifi-
cant microbiota shift compared to their Ntg littermates, 
whereas the 129 Sv G93A strain showed subtle changes, 
suggestinging a more stable baseline microbiota pro-
file less susceptible to mutation-induced perturbations. 
Interestingly, in C57Ola_G93A mice, specific taxa, such 
as Erysipelotrichaceae, Prevotellaceae NK3B31_group, 

Dubosiella, and Faecalibaculum decreased, while total 
MCFA, heptanoic acid, dodecanoic acid, and decanoic 
acid levels increased, alongside reduced propionic acid. 
The mutation-induced shift led C57Ola_G93A mice to 
acquire similarities with 129  Sv but in some taxa and 
metabolite levels, such as Clostridia, Lachnospiraceae, 
Erysipelotrichaceae, Dubosiella, and Faecalibaculum 
as well as SCFA and MCFA levels. This suggests that 
the SOD1G93A mutation in C57Ola mice may induce 
microbiota changes resembling those of 129  Sv strain, 
potentially contributing to disease pathogenesis or pro-
gression. Erysipelotrichaceae and Coriobacteriaceae have 
been linked to host lipid metabolism and dyslipidemic 
phenotypes [16, 43, 44, 70]. While Clostridia and Lach-
nospiraceae are significant producers of beneficial SCFA, 
Lachnospiraceae has also been associated with glucose 
and/or lipid metabolism disturbances, indicating poten-
tial metabolic dysregulation [14, 39, 62]. Furthermore, 
Lachnospiraceae genus bacterium A4 has been associ-
ated with disease progression in SOD1G93A ALS mice 
[72], suggesting a complex role of this taxon in both host 
health and disease [67].

The elevation of MCFA levels and reduction of SCFA 
in C57Ola_G93A mice may mirror a connection between 
mutant SOD1 expression and fatty acid metabolism, as 
MCFA are associated with inflammation and higher lev-
els in ALS patients [54]. The lower propionic acid level in 
both 129Sv_Ntg mice and C57Ola_G93A could indicate 
altered anti-inflammatory pathways. Notably, propionic 
acid is known to reduce inflammatory cytokines (TNF-α 
and IP-10) and promote metabolic health [1–3, 33].

Additionally, C57Ola_G93A strain demonstrated dis-
tinct immune responses compared to the 129Sv_G93A, 
with increased Erysipelotrichaceae, Dubosiella, and Fae-
calibaculum levels observed at disease onset and late 
stages. Strain-specific increases in cytokine KC/IL-8 dur-
ing the symptomatic stage further reflect the immune 
profile changes in these mutated strains. Although we 
could not measure fecal fatty acid levels during the onset 
and symptomatic stages due to material constrains, func-
tional pathway prediction estimated significant increases 
in lipoic acid metabolism and fatty acid degradation in 
C57Ola_G93A mice compared to 129Sv_G93A. The pre-
dicted upregulation of fatty acid degradation and ketone 
body metabolism in C57Ola_G93A mice may suggest an 
enhanced utilization of fatty acids for energy production, 
possibly as a compensatory mechanism for the impaired 
energy metabolism associated with ALS progression, 
which is not observed in 129Sv_G93A microbiota.

Lastly, our assessment of temporal changes within the 
same strains documented no significant shifts in alpha or 
beta diversity, suggesting that GM composition remained 
relatively stable throughout disease progression. This 
contrasts with previous studies reporting microbiota 
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changes over time in both ALS patient [20] and animal 
models [27]. Differences in study design, confounding 
variables (e.g., diet, environment), and the use of dis-
tinct strains likely account for these disparities. However, 
our findings do not exclude potential subtle alterations 
in specific microbial genera or functional properties. A 
more comprehensive approach, such as shotgun metage-
nomic sequencing, could reveal functionally relevant 
changes that 16 S rRNA sequencing may have missed.

Conclusions
Overall, these findings suggest that genetic background 
may influence differences in energetic metabolism and 
immune response modulation capacity of the GM in 
the two strains, potentially contributing to variable sus-
ceptibility to disease. Since the housing facility has been 
reported to significantly impact the mouse survival and 
microbiota [11, 27], the advantage of this study is that 
both fast and slow disease-progressing mouse cohorts are 
housed in the same facility and receive the same diet, so 
the potential diversity of their microbiota and immune/
inflammatory system in relation to their survival may be 
due exclusively to the different genetic background.

We acknowledge that mice were analyzed at different 
time points (16 or 22 weeks) due to variations in dis-
ease progression, which may introduce biological vari-
ability. While we focused on the pre-symptomatic phase 
(12 weeks) for microbiota and fatty acid comparisons, 
immune responses were assessed at both onset and 
symptomatic stages. Age-related factors may have influ-
enced immune outcomes, which should be considered 
when interpreting these results.

The functional and compositional variations in the GM, 
particularly in MCFA metabolism and specific bacterial 
taxa, such as Erysipelotrichaceae, may show predisposi-
tion to ALS. Further research is needed to clarify their 
role in disease progression.

Surely, the study has some limitations; firstly, we pri-
marily relied on fecal samples which may not fully cap-
ture microbial diversity and functionality throughout 
the gastrointestinal tract. Additionally, we did not assess 
circulating free fatty acids, and our taxonomic resolution 
was limited to the genus level. Future studies employing 
metagenomic or metatranscriptomic approaches could 
provide more detailed taxonomic information, enhancing 
our understanding of GM composition in ALS.

Future mechanistic studies, including fecal microbiota 
transplantation (FMT) experiments, targeted interven-
tions or genetic manipulations, could elucidate the causal 
relationships between genetic background, GM, and ALS 
pathology. In detail, FMT will allow for a more rigorous 
assessment of the causal GM effects on ALS progres-
sion. Additionally, research focused on elucidating the 
metabolic pathways and enzymatic mechanisms involved 

in medium-chain fatty acid metabolism in ALS models 
could provide valuable insights into their role in disease 
progression.
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